View More View Less
  • 1 AGH University of Science and Technology Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals al. A. Mickiewicza 30 30-059 Krakow Poland
  • 2 Academic Centre for Materials and Nanotechnology AGH University of Science and Technology al. A. Mickiewicza 30 30-059 Krakow Poland
  • 3 Faculty of Materials Science and Engineering Warsaw University of Technology ul. Wołoska 141 02-507 Warsaw Poland
Restricted access

A composite material consisting of metallic platinum nanoparticles and reduced graphene oxide was successfully obtained in microflow reactor. Moreover, subnanometric platinum particles were observed. Reduced graphene oxide plays an important role as a stabilizing agent for platinum nanoparticles. Reduced graphene oxide coverage and platinum particle size as well as size distribution depend mainly on initial concentration of platinum(IV) ions. High level of reduced graphene oxide coverage by platinum nanoparticles (PtNPs) was obtained and is equal to 71%. This in turn effects significantly the mass ratio of reduced graphene oxide to PtNPs which is equal to 49% (w/w). Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis of the obtained materials were performed. Also, catalytic properties of the obtained composite material consisting of PtNPs at reduced graphene oxide surface, towards electrochemical glucose oxidation, were investigated. It was found that the studied materials exhibit high catalytic activity for glucose electro-oxidation process.

  • (a) Stankovich, S.; Pine, R. D.; Nguyen, S. T.; Ruoff, R. S. Carbon 2006, 44, 3342–3347; (b) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558–1565; (c) Seyller, T.; Bostwick, A.; Emtsev, K. V.; Horn, K.; Ley, L.; McChesney, J. L.; Ohta, T.; Riley, J. D.; Rotenberg, E.; Speck, F. Phys. Status Solidi B 2008, 245, 1436–1446; (d) Wang, G.; Wang, B.; Park, J.; Yang, J.; Shen, X.; Yao, J. Carbon 2009, 47, 68–72; (e) Zhu, C.; Guo, S.; Fang, Y.; Dong, S. ACS Nano 2010, 4, 2429–2437; (f) Zhang, Y.; Ma, H.-L.; Zhang, Q.; Peng, J.; Li, J.; Zhai, M.; Yu, Z.-Z. J. Mater. Chem. 2012, 22, 13064–13069.

  • (a) Katsnelson, M. I. Graphene: Carbon in Two Dimensions; Cambridge University Press, 2012; (b) Choi, W.; Lee, J. Graphene: Synthesis and Applications; CRC Press, 2012; (c) Rao, C. N. R.; Sood, A. K. Graphene: Synthesis, Properties, and Phenomena; Wiley, 2013.

  • (a) Pei, S.; Cheng, H.-M. Carbon 2012, 50, 3210–3228; (b) Pham, V. H.; Pham, H. D.; Dang, T. T.; Hur, S. H.; Kim, E. J.; Kong, B. S.; Kim, S.; Chung, J. S. J. Mater. Chem 2012, 22, 10530–10536.

  • Leenaerts, O.; Partoens, B.; Peeters, F. M. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79.

  • (a) Muszynski, R.; Seger, B.; Kamat, P. V. J. Phys. Chem 2008, 112, 5263–5266; (b) Wojnicki, M.; Luty-Błocho, M.; Dobosz, I.; Grzonka, J.; Pacławski, K.; Kurzydłowski, K.; Fitzner, K. Mater. Sci. Appl. 2013, 4, 162–169; (c) Wojnicki, M.; Luty-Błocho, M.; Grzonka, J.; Pacławski, K.; Kurzydłowski, K. J.; Fitzner, K. Chem. Eng. J. 2013, 225, 597–606; (d) Xue, Y.; Zhao, H.; Wu, Z.; Li, X.; He, Y.; Yuan, Z. Biosens. Bioelectron. 2011, 29, 102–108.

  • Tien, H.-W.; Huang, Y.-L.; Yang, S.-Y.; Wang, J.-Y.; Ma, C.-C. M. Carbon 2011, 49, 1550–1560.

  • (a) Ghosh, A.; Basu, S.; Verma, A. Fuel Cells 2013, 13, 355–363; (b) Lu, J.; Do, I.; Drzal, L. T.; Worden, R. M.; Lee, I. ACS Nano 2008, 2, 1825–1832.

  • Shahbazali, E.; Hessel, V.; Noël, T.; Wang, Q. Nanotechnol. Rev. 2014, 3, 65–86.

  • Watson, D. J.; Attard, G. A. Electrochim. Acta 2001, 46, 3157–3161.

  • (a) Jin, C.; Chen, Z. Synth. Met. 2007, 157, 592–596; (b) Park, I.-S.; Lee, K.-S.; Jung, D.-S.; Park, H.-Y.; Sung, Y.-E. Electrochim. Acta 2007, 52, 5599–5605.

  • Basu, D.; Basu, S. Electrochim. Acta 2010, 55, 5775–5779.

  • (a) Tang, Y.; Zhang, L.; Wang, Y.; Zhou, Y.; Gao, Y.; Liu, C.; Xing, W.; Lu, T. J. Power Sources 2006, 162, 124–131; (b) Tang, Y. W.; Li, G.; Liu, C. P.; Xing, W.; Lu, T. H. Chin. Chem. Lett. 2004, 15, 875–878; (c) Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M. Carbon 2010, 48, 1124–1130.

  • Chen, S.; Xu, R.; Huang, H.; Yi, F.; Zhou, X.; Zeng, H. J. Mater. Sci. 2007, 42, 9572–9581.

  • (a) Wojnicki, M.; Pacławski, K.; Socha, R. P.; Fitnzer, K. Trans. Nonferrous Met. Soc. China 2013, 23, 1147–1156; (b) Adora, S.; Soldo-Olivier, Y.; Faure, R.; Durand, R. J. Phys. Chem. B 2001, 105, 10489–10495; (c) Gomesa, H. T.; Serpb, P.; Kalckb, P.; Figueiredoa, J. L.; Fariaa, J. L. Top. Catal. 2005, 33, 59–68.

  • (a) Tanga, Z.; Poh, C. K.; Lee, K. K.; Tian, Z.; Chua, D. H. C.; Lin, J. J. Power Sources 2010, 195, 155–159; (b) Mason, C. W.; Kannan, A. M. ISRN Nanotechnol. 2011, 2011, article ID 708045, 6 pages, http://dx.doi.org/10.5402/2011/708045

  • Hessel, V.; Löwe, H. Chem. Eng. J. 2003, 26, 391–408.

  • (a) Luty-Błocho, M.; Fitzner, K.; Hessel, V.; Löb, P.; Maskos, M.; Metzke, D.; Pacławski, K.; Wojnicki, M. Chem. Eng. J. 2011, 171, 279–290; (b) Luty-Błocho, M.; Wojnicki, M.; Grzonka, J.; Kurzydłowski, K. J. Arch. Metall. Mater. 2014, 59, 509; (c) Sebastián, V.; Lee, S.-K.; Zhou, C.; Kraus, M. F.; Fujimoto, J. G.; Jensen, K. F. Chem. Commun. 2012, 48, 6654–6656; (d) Torigoe, K.; Watanabe, Y.; Endo, T.; Sakai, K.; Sakai, H.; Abe, M. J. Nanopart. Res. 2010, 12, 951–960; (e) Günthera, P. M.; Großa, G. A.; Wagnera, J.; Jahnb, F.; Köhlera, J. M. Chem. Eng. J. 2008, 135S, S126–S130.

  • Luty-Błocho, M.; Wojnicki, M.; Pacławski, K.; Fitzner, K. Chem. Eng. J. 2013, 226, 46–51.

  • Porsgaard, S.; Merte, L.; Ono, L.; Behafarid, F.; Matos, J.; Helveg, S.; Salmeron, M.; Cuenya, B.; Besenbacher, F. ACS Nano 2012, 6, 10743–10749.

  • Arico, A.; Shukla, A.; Kim, H.; Park, S.; Min, M.; Antonucci, V. Appl. Surf. Sci. 2001, 172, 33–40.

  • (a) Saidani, F.; Rochefort, D.; Mohamedi, M. Laser Chem. 2010, 2010; (b) Wagner, C. D.; Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy; Physical Electronics Division, Perkin-Elmer Corp., 1979.

  • Van Dam, H. E.; Van Bekkum, H. J. Catal. 1991, 131, 335–349.

  • Gharibshahi, E.; Saion, E. Int. J. Mol. Sci. 2012, 13, 14723–14741.

  • (a) Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 7238–7248; (b) Zande, B. M. I. v. d.; Böhmer, M. R.; Fokkink, L. G. J.; Schönenberger, C. Langmuir 2000, 16, 451–458.

  • Ledwith, D. M.; Whelan, A. M.; Kelly, J. M. J. Mater. Chem. 2007, 17, 2459–2464.

  • (a) Wang, X.; Bai, H.; Shi, G. JACS 2011, 133, 6338–6342; (b) Chiu, N.-F.; Huang, T.-Y. Sens. Actuators, B 2014, 197, 35–42; (c) Hu, Y.; Li, F.; Bai, X.; Li, D.; Hua, S.; Wang, K.; Niu, L. Chem. Commun. 2011, 47, 1743–1745.

  • Bose, S.; Kuila, T.; Mishra, A. K.; Kim, N. H.; Lee, J. H. J. Mater. Chem. 2012, 22, 9696–9703.

  • Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228–240.

  • Ferreira, P. J.; O', G. J. l.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteigerc, H. A. J. Electrochem. Soc. 2005, 152, A2256–A2271.

  • Wu, G.-h.; Song, X.-h.; Wu, Y.-f.; Chen, X.-m.; Luo, F.; Chen, X. Talanta 2013, 105, 379–385.

  • Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A. J.; Xie, H.; Moussy, F.; Milne, W. I. Sensors 2012, 12, 5996–6022.

  • (a) Godoi, D. R. M.; Perez, J.; Mercedes Villullas, H. J. Electrochem. Soc. 2007, 154, B474-B479; (b) Srinivas, D.; Ratnasamy, P. In Nanotechnology in Catalysis; Zhou, B., Han, S., Raja, R., Somorjai, G., Eds.; Springer: New York, 2007; pp. 183–220.

  • Minoli, D. Nanotechnology Applications to Telecommunications and Networking; Wiley, 2005.

  • Ten Elshof, J. E.; Abadal, C. R.; Sekulić, J.; Chowdhury, S. R.; Blank, D. H. A. Microporous Mesoporous Mater. 2003, 65, 197–208.

  • Xie, L.; Brault, P.; Coutanceau, C.; Bauchire, J.-M.; Caillard, A.; Baranton, S.; Berndt, J.; Neyts, E. C. Appl. Catal., B 2015, 162, 21–26.

  • Sellin, R.; Clacens, J.-M.; Coutanceau, C. Carbon 2010, 48, 2244–2254.