Authors:
Marek Wojnicki AGH University of Science and Technology Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals al. A. Mickiewicza 30 30-059 Krakow Poland

Search for other papers by Marek Wojnicki in
Current site
Google Scholar
PubMed
Close
,
Magdalena Luty-Błocho AGH University of Science and Technology Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals al. A. Mickiewicza 30 30-059 Krakow Poland

Search for other papers by Magdalena Luty-Błocho in
Current site
Google Scholar
PubMed
Close
,
Krzysztof Mech Academic Centre for Materials and Nanotechnology AGH University of Science and Technology al. A. Mickiewicza 30 30-059 Krakow Poland

Search for other papers by Krzysztof Mech in
Current site
Google Scholar
PubMed
Close
,
Justyna Grzonka Faculty of Materials Science and Engineering Warsaw University of Technology ul. Wołoska 141 02-507 Warsaw Poland

Search for other papers by Justyna Grzonka in
Current site
Google Scholar
PubMed
Close
,
Krzysztof Fitzner AGH University of Science and Technology Faculty of Non-Ferrous Metals, Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals al. A. Mickiewicza 30 30-059 Krakow Poland

Search for other papers by Krzysztof Fitzner in
Current site
Google Scholar
PubMed
Close
, and
Krzysztof Kurzydłowski Faculty of Materials Science and Engineering Warsaw University of Technology ul. Wołoska 141 02-507 Warsaw Poland

Search for other papers by Krzysztof Kurzydłowski in
Current site
Google Scholar
PubMed
Close
Restricted access

A composite material consisting of metallic platinum nanoparticles and reduced graphene oxide was successfully obtained in microflow reactor. Moreover, subnanometric platinum particles were observed. Reduced graphene oxide plays an important role as a stabilizing agent for platinum nanoparticles. Reduced graphene oxide coverage and platinum particle size as well as size distribution depend mainly on initial concentration of platinum(IV) ions. High level of reduced graphene oxide coverage by platinum nanoparticles (PtNPs) was obtained and is equal to 71%. This in turn effects significantly the mass ratio of reduced graphene oxide to PtNPs which is equal to 49% (w/w). Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis of the obtained materials were performed. Also, catalytic properties of the obtained composite material consisting of PtNPs at reduced graphene oxide surface, towards electrochemical glucose oxidation, were investigated. It was found that the studied materials exhibit high catalytic activity for glucose electro-oxidation process.

  • (a) Stankovich, S.; Pine, R. D.; Nguyen, S. T.; Ruoff, R. S. Carbon2006,44, 3342–3347; (b) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon2007,45, 1558–1565; (c) Seyller, T.; Bostwick, A.; Emtsev, K. V.; Horn, K.; Ley, L.; McChesney, J. L.; Ohta, T.; Riley, J. D.; Rotenberg, E.; Speck, F. Phys. Status Solidi B2008,245, 1436–1446; (d) Wang, G.; Wang, B.; Park, J.; Yang, J.; Shen, X.; Yao, J. Carbon2009,47, 68–72; (e) Zhu, C.; Guo, S.; Fang, Y.; Dong, S. ACS Nano2010,4, 2429–2437; (f) Zhang, Y.; Ma, H.-L.; Zhang, Q.; Peng, J.; Li, J.; Zhai, M.; Yu, Z.-Z. J. Mater. Chem.2012,22, 13064–13069.

  • (a) Katsnelson, M. I. Graphene: Carbon in Two Dimensions; Cambridge University Press, 2012; (b) Choi, W.; Lee, J. Graphene: Synthesis and Applications; CRC Press, 2012; (c) Rao, C. N. R.; Sood, A. K. Graphene: Synthesis, Properties, and Phenomena; Wiley, 2013.

  • (a) Pei, S.; Cheng, H.-M. Carbon2012,50, 3210–3228; (b) Pham, V. H.; Pham, H. D.; Dang, T. T.; Hur, S. H.; Kim, E. J.; Kong, B. S.; Kim, S.; Chung, J. S. J. Mater. Chem2012,22, 10530–10536.

  • Leenaerts, O.; Partoens, B.; Peeters, F. M. Phys. Rev. B: Condens. Matter Mater. Phys.2009,79.

  • (a) Muszynski, R.; Seger, B.; Kamat, P. V. J. Phys. Chem2008,112, 5263–5266; (b) Wojnicki, M.; Luty-Błocho, M.; Dobosz, I.; Grzonka, J.; Pacławski, K.; Kurzydłowski, K.; Fitzner, K. Mater. Sci. Appl.2013,4, 162–169; (c) Wojnicki, M.; Luty-Błocho, M.; Grzonka, J.; Pacławski, K.; Kurzydłowski, K. J.; Fitzner, K. Chem. Eng. J.2013,225, 597–606; (d) Xue, Y.; Zhao, H.; Wu, Z.; Li, X.; He, Y.; Yuan, Z. Biosens. Bioelectron.2011,29, 102–108.

  • Tien, H.-W.; Huang, Y.-L.; Yang, S.-Y.; Wang, J.-Y.; Ma, C.-C. M. Carbon2011,49, 1550–1560.

  • (a) Ghosh, A.; Basu, S.; Verma, A. Fuel Cells2013,13, 355–363; (b) Lu, J.; Do, I.; Drzal, L. T.; Worden, R. M.; Lee, I. ACS Nano2008,2, 1825–1832.

  • Shahbazali, E.; Hessel, V.; Noël, T.; Wang, Q. Nanotechnol. Rev.2014,3, 65–86.

  • Watson, D. J.; Attard, G. A. Electrochim. Acta2001,46, 3157–3161.

  • (a) Jin, C.; Chen, Z. Synth. Met.2007,157, 592–596; (b) Park, I.-S.; Lee, K.-S.; Jung, D.-S.; Park, H.-Y.; Sung, Y.-E. Electrochim. Acta2007,52, 5599–5605.

  • Basu, D.; Basu, S. Electrochim. Acta2010,55, 5775–5779.

  • (a) Tang, Y.; Zhang, L.; Wang, Y.; Zhou, Y.; Gao, Y.; Liu, C.; Xing, W.; Lu, T. J. Power Sources2006,162, 124–131; (b) Tang, Y. W.; Li, G.; Liu, C. P.; Xing, W.; Lu, T. H. Chin. Chem. Lett.2004,15, 875–878; (c) Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M. Carbon2010,48, 1124–1130.

  • Chen, S.; Xu, R.; Huang, H.; Yi, F.; Zhou, X.; Zeng, H. J. Mater. Sci.2007,42, 9572–9581.

  • (a) Wojnicki, M.; Pacławski, K.; Socha, R. P.; Fitnzer, K. Trans. Nonferrous Met. Soc. China2013,23, 1147–1156; (b) Adora, S.; Soldo-Olivier, Y.; Faure, R.; Durand, R. J. Phys. Chem. B2001,105, 10489–10495; (c) Gomesa, H. T.; Serpb, P.; Kalckb, P.; Figueiredoa, J. L.; Fariaa, J. L. Top. Catal.2005,33, 59–68.

  • (a) Tanga, Z.; Poh, C. K.; Lee, K. K.; Tian, Z.; Chua, D. H. C.; Lin, J. J. Power Sources2010,195, 155–159; (b) Mason, C. W.; Kannan, A. M. ISRN Nanotechnol.2011, 2011, article ID 708045, 6 pages, http://dx.doi.org/10.5402/2011/708045

  • Hessel, V.; Löwe, H. Chem. Eng. J.2003,26, 391–408.

  • (a) Luty-Błocho, M.; Fitzner, K.; Hessel, V.; Löb, P.; Maskos, M.; Metzke, D.; Pacławski, K.; Wojnicki, M. Chem. Eng. J.2011,171, 279–290; (b) Luty-Błocho, M.; Wojnicki, M.; Grzonka, J.; Kurzydłowski, K. J. Arch. Metall. Mater.2014,59, 509; (c) Sebastián, V.; Lee, S.-K.; Zhou, C.; Kraus, M. F.; Fujimoto, J. G.; Jensen, K. F. Chem. Commun.2012,48, 6654–6656; (d) Torigoe, K.; Watanabe, Y.; Endo, T.; Sakai, K.; Sakai, H.; Abe, M. J. Nanopart. Res.2010,12, 951–960; (e) Günthera, P. M.; Großa, G. A.; Wagnera, J.; Jahnb, F.; Köhlera, J. M. Chem. Eng. J.2008,135S, S126–S130.

  • Luty-Błocho, M.; Wojnicki, M.; Pacławski, K.; Fitzner, K. Chem. Eng. J.2013,226, 46–51.

  • Porsgaard, S.; Merte, L.; Ono, L.; Behafarid, F.; Matos, J.; Helveg, S.; Salmeron, M.; Cuenya, B.; Besenbacher, F. ACS Nano2012,6, 10743–10749.

  • Arico, A.; Shukla, A.; Kim, H.; Park, S.; Min, M.; Antonucci, V. Appl. Surf. Sci.2001,172, 33–40.

  • (a) Saidani, F.; Rochefort, D.; Mohamedi, M. Laser Chem.2010,2010; (b) Wagner, C. D.; Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy; Physical Electronics Division, Perkin-Elmer Corp., 1979.

  • Van Dam, H. E.; Van Bekkum, H. J. Catal.1991,131, 335–349.

  • Gharibshahi, E.; Saion, E. Int. J. Mol. Sci.2012,13, 14723–14741.

  • (a) Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B2006,110, 7238–7248; (b) Zande, B. M. I. v. d.; Böhmer, M. R.; Fokkink, L. G. J.; Schönenberger, C. Langmuir2000,16, 451–458.

  • Ledwith, D. M.; Whelan, A. M.; Kelly, J. M. J. Mater. Chem.2007,17, 2459–2464.

  • (a) Wang, X.; Bai, H.; Shi, G. JACS2011,133, 6338–6342; (b) Chiu, N.-F.; Huang, T.-Y. Sens. Actuators, B2014,197, 35–42; (c) Hu, Y.; Li, F.; Bai, X.; Li, D.; Hua, S.; Wang, K.; Niu, L. Chem. Commun.2011,47, 1743–1745.

  • Bose, S.; Kuila, T.; Mishra, A. K.; Kim, N. H.; Lee, J. H. J. Mater. Chem.2012,22, 9696–9703.

  • Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev.2010,39, 228–240.

  • Ferreira, P. J.; O', G. J. l.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteigerc, H. A. J. Electrochem. Soc.2005,152, A2256–A2271.

  • Wu, G.-h.; Song, X.-h.; Wu, Y.-f.; Chen, X.-m.; Luo, F.; Chen, X. Talanta2013,105, 379–385.

  • Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A. J.; Xie, H.; Moussy, F.; Milne, W. I. Sensors2012,12, 5996–6022.

  • (a) Godoi, D. R. M.; Perez, J.; Mercedes Villullas, H. J. Electrochem. Soc.2007,154, B474-B479; (b) Srinivas, D.; Ratnasamy, P. In Nanotechnology in Catalysis; Zhou, B., Han, S., Raja, R., Somorjai, G., Eds.; Springer: New York, 2007; pp. 183–220.

  • Minoli, D. Nanotechnology Applications to Telecommunications and Networking; Wiley, 2005.

  • Ten Elshof, J. E.; Abadal, C. R.; Sekulić, J.; Chowdhury, S. R.; Blank, D. H. A. Microporous Mesoporous Mater.2003,65, 197–208.

  • Xie, L.; Brault, P.; Coutanceau, C.; Bauchire, J.-M.; Caillard, A.; Baranton, S.; Berndt, J.; Neyts, E. C. Appl. Catal., B2015,162, 21–26.

  • Sellin, R.; Clacens, J.-M.; Coutanceau, C. Carbon2010,48, 2244–2254.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)