View More View Less
  • 1 MESA+ Institute for Nanotechnology Laboratory of Molecular Nanofabrication University of Twente, P.O. Box 217 7500 AE Enschede The Netherlands
  • 2 MESA+ Institute for Nanotechnology Laboratory of Physics of Interfaces and Nanomaterials University of Twente, P.O. Box 217 7500 AE Enschede The Netherlands
Restricted access

Cinchona alkaloid and proline derivatives as enantioselective catalysts were covalently attached onto the inner walls of a microreactor using glycidyl methacrylate polymer brushes. The successful formation of the organocatalyst-functionalized brush layers on flat silicon oxide surfaces was confirmed by several techniques such as Fourier transform infrared (FT-IR), ellipsometry, and X-ray photoelectron spectroscopy (XPS). The applicability of the cinchona alkaloid (cinchonidine or quinidine)- and proline-containing polymer brushes in a microreactor was demonstrated for the Diels–Alder reaction between anthrone and N-substituted maleimides, and the aldol reaction between 4-nitrobenzaldehyde and cyclohexanone, respectively, which showed moderate conversions (up to 55% and 23%, respectively) and moderate to good enantioselectivities (up to 55% and 93%, respectively). The pristine catalytic activity of the microreactor was intact even after 1 month.

  • Ojima, I. Catalytic Asymmetric Synthesis, 3rd ed.; John Wiley and Sons: Hoboken, New Jersey, 2010.

  • Watts, P.; Wiles, C. Chem. Commun. 2007, 443–467.

  • Brivio, M.; Verboom, W.; Reinhoudt, D. N. Lab Chip 2006, 6, 329–344.

  • Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem. Int. Ed. 2011, 50, 7502–7519.

  • Elvira, K. S.; Casadevall i Solvas, X.; Wootton, R. C. R.; deMello, A. J. Nat. Chem. 2013, 5, 905–915.

  • Liu, X.; Unal, B.; Jensen, K. F. Catal. Sci. Technol. 2012, 2, 2134–2138.

  • Wiles, C.; Watts, P. Green Chem. 2014, 16, 55–62.

  • Irfan, M.; Glasnov, T. N.; Kappe, C. O. ChemSusChem 2011, 4, 300–316.

  • Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2013, 52, 6590–6604.

  • Zhao, D.; Ding, K. ACS Catal. 2013, 3, 928–944.

  • Arakawa, Y.; Wennemers, H. ChemSusChem 2013, 6, 242–245.

  • Osorio-Planes, L.; Rodríguez-Escrich, C.; Pericàs, M. A. Org. Lett. 2012, 14, 1816–1819.

  • Ötvös, S. B.; Mándity, I. M.; Fülöp, F. ChemSusChem 2012, 5, 266–269.

  • Alza, E.; Rodríguez-Escrich, C.; Sayalero, S.; Bastero, A.; Pericàs, M. A. Chem. Eur. J. 2009, 15, 10167–10172.

  • Ayats, C.; Henseler, A. H.; Pericàs, M. A. ChemSusChem 2012, 5, 320–325.

  • Lee, J.-W.; Mayer-Gall, T.; Opwis, K.; Song, C. E.; Gutmann, J. S.; List, B. Science 2013, 341, 1225–1229.

  • Pericàs, M. A.; Herrerías, C. I.; Solà, L. Adv. Synth. Catal. 2008, 350, 927–932.

  • Massi, A.; Cavazzini, A.; Del, Z. L.; Pandoli, O.; Costa, V.; Pasti, L.; Giovannini, P. P. Tetrahedron Lett. 2011, 52, 619–622.

  • Karim, A.; Bravo, J.; Gorm, D.; Conant, T.; Datye, A. Catal. Today 2005, 110, 86–91.

  • Klemm, E.; Döring, H.; Geisselmann, A.; Schirrmeister, S. Chem. Eng. Technol. 2007, 30, 1615–1621.

  • Costantini, F.; Bula, W. P.; Salvio, R.; Huskens, J.; Gardeniers, H. J. G. E.; Reinhoudt, D. N.; Verboom, W. J. Am. Chem. Soc. 2009, 131, 1650–1651.

  • Munirathinam, R.; Huskens, J.; Verboom, W. J. Flow Chem. 2014, 4, 135–139.

  • Costantini, F.; Benetti, E. M.; Tiggelaar, R. M.; Gardeniers, H. J. G. E.; Reinhoudt, D. N.; Huskens, J.; Vancso, G. J.; Verboom, W. Chem. Eur. J. 2010, 16, 12406–12411.

  • Costantini, F.; Benetti, E. M.; Reinhoudt, D. N.; Huskens, J.; Vancso, G. J.; Verboom, W. Lab Chip 2010, 10, 3407–3412.

  • Ricciardi, R.; Munirathinam, R.; Huskens, J.; Verboom, W. ACS Appl. Mater. Interfaces 2014, 6, 9386–9392.

  • Munirathinam, R.; Ricciardi, R.; Egberink, R. J. M.; Huskens, J.; Holtkamp, M.; Wormeester, H.; Karst, U.; Verboom, W. Beilstein J. Org. Chem. 2013, 9, 1698–1704.

  • Kacprzak, K.; Gawroński, J. Synthesis 2001, 7, 961–998.

  • List, B. Tetrahedron 2002, 58, 5573–5590.

  • Munirathinam, R.; Joe, D.; Huskens, J.; Verboom, W. J. Flow Chem. 2012, 2, 129–134.

  • Kacprzak, K. M.; Maier, N. M.; Lindner, W. Tetrahedron Lett. 2006, 47, 8721–8726.

  • Jumde, R. P.; Mandoli, A.; De Lorenzi, F.; Pini, D.; Salvadori, P. Adv. Synth. Catal. 2010, 352, 1434–1440.

  • Wang, W.; Ma, X.; Wan, J.; Cao, J.; Tang, Q. Dalton Trans. 2012, 41, 5715–5726.

  • Gisin, B. F. Anal. Chim. Acta 1972, 58, 248–249.

  • Eldaroti, H. H.; Gadir, S. A.; Refat, M. S.; Adam, A. M. A. J. Pharm. Anal. 2014, 4, 81–95.

  • Riant, O.; Kagan, H. B. Tetrahedron Lett. 1989, 30, 7403–7406.

  • Hau, C.-K.; He, H.; Lee, A. W. M.; Chik, D. T. W.; Cai, Z.; Wong, H. N. C. Tetrahedron 2010, 66, 9860–9874.

  • Bogdan, A. R.; Mason, B. P.; Sylvester, K. T.; McQuade, D. T. Angew. Chem., Int. Ed. 2007, 46, 1698–1701.

  • Font, D.; Sayalero, S.; Bastero, A.; Jimeno, C.; Pericàs, M. A. Org. Lett. 2007, 10, 337.

  • Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2005, 128, 734–735.

  • In case of the Diels–Alder reaction, a direct comparison of the wall-coated versus the packed-bed approach results was not possible due to lack of relevant literature data.

  • Leoncini, A. Supported chiral proline and pyrrolidine organocatalysts for enantioselective C–C bond formation reactions. Master Thesis, Università di Pisa (Pisa), 2013.

  • Bai, J.-F.; Guo, Y.-L.; Peng, L.; Jia, L.-N.; Xu, X.-Y.; Wang, L.-X. Tetrahedron 2013, 69, 1229–1233.