View More View Less
  • 1 Universidad de Sevilla Escuela Superior de Ingenieros C/Camino de los Descubrimientos s/n, 41092 Sevilla Spain
  • 2 Facultad de Farmacia, Universidad de Sevilla Departamento Farmacia y Tecnología Farmacéutica C/Profesor García González n°2 41012 Sevilla Spain
  • 3 P.I. Parque Plata Ingeniatrics Tecnologías SL C/Camino Mozárabe 41, 41900 Sevilla Spain
  • 4 Escuela Técnica Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Superior de Ingenieros Universidad de Sevilla Spain
  • 5 Farmacéutica Departamento de Farmacia y Tecnología Facultad de Farmacia Universidad de Sevilla Spain
Restricted access

Massive, nearly monodisperse, true microencapsulation of a wide variety of active ingredients within biocompatible shells can be achieved using flow focusing at moderate-high Reynolds numbers, a paradigmatic tool for highly controlled flow chemistry processes whose flexibility and physical aspects are briefly illustrated here. We show that the natural, regular capillary breakup of a laminar high-speed microjet produced by gentle mechanical means alone allows the production of true microcapsules with controlled dimensions. The process versatility is shown in a variety of examples including encapsulation of different materials as proteins and/or microorganisms in biocompatible polymers as poly-l-glutamic acid (PLGA). Microcapsules produced show nearly homogeneous size, well-centered core, and their size and structure are well predicted by simple theoretical models.

  • Varentsov, V. L. Nucl. Instrum. Methods A 2011, 646, 12–21.

  • Martín-Banderas, L. ; Gañán-Calvo, A. M.; Fernández-Arévalo, M. Lett. Drug Des. Discov. 2010, 7(4), 300–309.

  • Martín-Banderas, L.; Flores-Mosquera, M.; Riesco-Chueca, P.; Rodríguez-Gil, A.; Cebolla, A.; Chávez, S.; Gañán-Calvo, A. M. Small 2005, 1, 688–692.

  • Loscertales, I. G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Márquez, M. Gañán-Calvo, A. M. Science 2002, 295, 1695–1698.

  • Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Science 2005, 308, 537–541.

  • Gañán-Calvo, A. M. Phys. Rev. Lett. 1998, 80, 285–288.

  • Gordillo, J. M.; Pérez-Saborid, M.; Gañán-Calvo, A. M. J. Fluid Mech. 2001, 448, 23–51.

  • Gañán-Calvo, A. M.; Ferrera, C.; Montanero, J. M. J. Fluid Mech. 2011, 670, 427–438.

  • Leib, S. J.; Goldstein, M. E. Phys. Fluids 1986, 29, 952–954.

  • Gañán-Calvo, A. M.; Riesco-Chueca, P. J. Fluid Mech. 2006, 553, 75–78.

  • Gañán-Calvo, A. M; Montanero, J. M.; Martín-Banderas, L.; Flores-Mosquera, M. Adv. Drug Deliv. Rev. 2013, 65, 1447–1469.

  • Santos, E.; Orive, G.; Calvo, A.; Catena, R.; Fernández-Robredo, P.; Layana, A. G.; Hernández, R. M.; Pedraz, J. L. J. Control. Release 2012, 158, 443–450.

  • Emerich, D. F.; Orive, G.; Thanos, C.; Tornoe, J.; Wahlberg, L. U. Drug Deliv. Rev. 2014, 67–68, 131–141

  • Orive, G.; Hernández, R. M.; Rodríguez, G.; Calafiore, R.; Ming Swi Chang, T.; de Vos, P. et al. Trends Biotechnol. 2004, 22, 87–92.

  • Santos, E.; Hernández, R. M.; Pedraz, J. L.; Orive, G. Trends Biotechnol. 2012, 30, 331–341.

  • Wu, T.; Sun, Y.; Li, N.; de Villiers, M. M.; Yu, L. Langmuir 2007, 23, 5148–5153.

  • Alhnan, M. A.; Basit, A. W. J. Pharm. Sci. 2011, 100, 3284–3293.

  • Nishijima, K.; Yamasaki, J.; Orihara, H.; Tanaka, N. Nanotech. 2004, 15, S329–S332.

  • Morrison, D. R. NASA Tech Briefs 2003.