View More View Less
  • 1 Johannes Gutenberg University Mainz, Duesbergweg 10–14, 55128, Mainz, Germany
  • 2 Fraunhofer ICT-IMM, Carl-Zeiss-Strasse 18–20, 55129, Mainz, Germany
Restricted access

Fast mixing is essential for many microfluidic applications, especially for flow at low Reynolds numbers. A capillary tube-in-tube coaxial flow setup in combination with a glass microreactor was used to produce immiscible multiphase segments. These double emulsion segments are composed of an organic solvent as the shell (outer) phase and a completely fluorinated liquid (Fluorinert® FC-40) as the core (inner) phase. Due to the higher density of the core droplets, they are responsive to changing their position to the force of gravity (g-force). By gently shaking or jiggling the reactor, the core drop flows very fast in the direction of the g-field without leaving the shell organic phase segment. Furthermore, by shaking or jiggling the reactor, the inner droplet moves along the phase boundary of the shell segment and continuous phase. Computational fluid dynamics (CFD) calculations show an enhancement of the internal circulations, i.e., causing an exceptional mixing inside of the shell segment. For reactions which are limited by mass transfer, where the conversion significantly increases with improved mixing, these recirculation zones are decisive because they also accelerate the mixing process. With a common phase-transfer catalytic (PTC) etherification of phenol with dimethyl sulphate, a remarkable increase of yield (85% gas chromatography [GC]) could be achieved by applying active mixing within a segment in continuous flow.

  • 1.

    Köhler, J. M.; Cahill, P. B. Micro-Segmented Flow, Applications in Chemistry and Biology; Springer: Berlin, Heidelberg, 2014. DOI: 10.1007/978-3-642-38780-7.

    • Search Google Scholar
    • Export Citation
  • 2.

    Song, H.; Tice, J. D.; Ismagilov, R. F. Angew. Chem., Int. Ed. 2003, 42, 768772.

  • 3.

    Seemann, R.; Brinkmann, M.; Pfohl, T.; Herminghaus, S. Rep. Prog. Phys. 2012, 75, 016601.

  • 4.

    Song, H.; Chen, D. L.; Ismagilov, R. F. Angew. Chem., Int. Ed. 2006, 45, 73367356.

  • 5.

    Bringer, M. R.; Gerdts, C. J.; Song, H.; Tice, J. D.; Ismagilov, R. F. Philos. Trans. R. Soc. London 2004, Ser.A, 10871104.

  • 6.

    Hodges, S. R.; Jensen, O. E.; Rallison, J. M. J. Fluid Mech. 2004, 279301.

  • 7.

    Baroud, C. N.; Gallaire, F.; Dangla, R. Lab Chip. 2010, 10, 20322045.

  • 8.

    de Lozar, A.; Hazel, A. L.; Juel, A. Phys. Rev. Lett. 2007, 99, 234501.

  • 9.

    Kinoshita, H.; Kaneda, S.; Fujii, T.; Oshima, M. Lab Chip. 2007, 7, 338346.

  • 10.

    Lindken, R.; Rossi, M.; Große, S.; Westerweel, J. Lab Chip. 2009, 9, 25512567.

  • 11.

    Cordero, M. L. ; Rolfsnes, H. O.; Burnham, D.R.; Campbell, P. A.; McGloin, D.; Baroud, C. N. New J. Phys. 2009, 11, 075033.

  • 12.

    Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Science 2005, 308, 537541.

  • 13.

    Chu, L.-Y.; Utada, A. S.; Shah, R. K.;Kim, J.-W.; Weitz, D.A. Angew. Chem., Int. Ed., 2007, 46, 89708974.

  • 14.

    Adams, L. L. A.; Kodger, T. E.; Kim, S.-H.; Shum, H. C.; Franke, T.; Weitz, D. A. Soft Matter 2012, 8, 1071910724.

  • 15.

    Nisisako, T.; Okushima, S.; Torii, T. Soft Matter 2005, 1, 2327.

  • 16.

    The OpenFOAM Foundation. www.openfoam.org (accessed December 10, 2014).

  • 17.

    Wesseling, P. Principles of Computational Fluid Dynamics; Springer: Berlin, Heidelberg, 2000. DOI: 10.1007/978-3-642-05146-3.