View More View Less
  • 1 University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, United States
  • 2 Vapourtec Ltd., Bury St. Edmunds IP28 6TS, United Kingdom
  • 3 University of Connecticut Health Center, The Exchange, 263 Farmington Ave, Farmington, CT 06030, United States
Restricted access

The catalyzed and uncatalyzed preparation of ethyl levulinate from levulinic acid and ethanol is presented. In the case of acid-catalyzed reactions, conditions were optimized in batch using microwave heating and then scaled-up using continuousflow processing. Both p-toluenesulfonic acid and sulfuric acid were used as catalysts, the latter proving most amenable. For the uncatalyzed reactions, all reactions were performed under continuous-flow conditions, using apparatus capable of operating at high temperature and pressure. Optimal conditions for the uncatalyzed process required heating a 3.6-M solution of levulinic acid in ethanol at 270 °C with a residence time of 30 min.

  • 1.

    For example, see: Bermudez, J. M.; Menéndez, J. A.; Romero, A. A.; Serrano, E.; Garcia-Martinez, J.; Luque, R. Green Chem. 2013, 15, 27862792.

    • Search Google Scholar
    • Export Citation
  • 2.

    For example, see: Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. J. Agric. Food Chem. 2009, 57, 37023708.

  • 3. (a)

    Lei, T.; Wang, Z.; Li, Y.; Li, Z.; He, X.; Zhu, J. BioResources, 2013, 8, 26962707;

  • (b)

    Christensen, E.;Williams, A.; Paul, S.; Burton, S.; McCormick, R. L. Energy Fuels 2011, 25, 54225428;

  • (c)

    Windom, B. C.; Lovestead, T. M.; Mascal, M.; Nikitin, E. B.; Bruno, T. J. Energy Fuels 2011, 25, 18781890;

  • (d)

    Lei, T.;Wang, Z.; Li, Y.; Li, Z.; He, X.; Zhu, J. BioResources 2013, 8, 26962707.

  • 4.

    For recent examples, see: (a) Oliveira, B. L.; Teixeira Da Silva, V. Catal. Today, 2014, 234, 257263;

  • (b)

    Yadav, G. D.; Yadav, A. R.Chem. Eng. J. 2014, 243, 556563;

  • (c)

    Kuwahara, Y.; Kaburagi, W.; Nemoto, K.; Fujitani, T. Appl. Catal., A 2014, 476, 186196;

  • (d)

    Patil, C. R.; Niphadkar, P. S.; Bokade, V. V.; Joshi, P. N. Catal. Commun. 2014, 43, 188191;

  • (e)

    Fernandes, D. R.; Rocha, A. S.; Mai, E. F.; Mota, C. J. A.; Teixeira Da Silva, V. Appl. Catal., A 2012, 425426, 199204;

  • (f)

    Budarin, V. L.; Clark, J. H.; Luque, R.; Macquarrie, D. J. Chem. Commun. 2007, 634636.

  • 5. (a)

    Mascal, M.; Nikitin, E. B. ChemSusChem 2010, 3, 13491351;

  • (b)

    Mascal, M.; Nikitin, E. Green Chem. 2010, 12, 370373.

  • 6. (a)

    Chang, C.; Xu, G.; Zhu, W.; Bai, J.; Fang, S. Fuel 2015, 140, 365370;

  • (b)

    Amarasekara, A. S.; Wiredu, B. Bioenergy Res. 2014, 7, 12371243;

  • (c)

    Hu, X.; Wu, L.;Wang, Y.; Song, Y.; Mourant, D.; Gunawan, R.; Gholizadeh, M.; Li, C.-Z. Bioresource Technol. 2013, 133, 469474;

  • (d)

    Saravanamurugan, S.; Riisager, A. Catal. Commun. 2012, 17, 7175.

  • 7.

    For reviews, see: (a) Dencic, I.; Noël, T.; Meuldijk, J.; de Croon, M.; Hessel, V. Eng. Life Sci. 2013, 13, 326343;

  • (b)

    Serrano-Ruiz, J. C.; Luque, R.; Campelo, J. M.; Romero, A. A. Challenges 2012, 3, 114132.

  • 8.

    For examples, see: (a) Wilson, N. S.; Osuma, A. T.; Van Camp, J. A.; Xu, X. Tetrahedron Lett. 2012, 53, 44984501;

  • (b)

    Glasnov, T. N.; Kappe, C. O. Chem. Eur. J. 2011, 17, 1195611968.

  • 9.

    For recent examples, see: (a) Britton, J.; Dalziel, S. B.; Raston, C. L. RSC Adv. 2015, 5, 16551660;

  • (b)

    Elgue, S.; Conté, A.; Marty, A.; Condoret, J.-S. J. Chem. Technol. Biotechnol. 2014, 89, 15901598;

  • (c)

    Patel, D.; Saha, B. Ind. Eng. Chem. Res. 2012, 51, 1196511974;

  • (d)

    Becker, R.; Koch, K.; Nieuwland, P. J.; Rutjes, F. P. J. T. Chim. Oggi 2011, 29, 4749.

  • 10.

    For a review, see: Gawande, M. B.; Bonifacio, V. D. B.; Luque, R.; Branco, P. S.; Varma, R. S. ChemSusChem 2014, 7, 2444.

  • 11.

    For a review, see: Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q. ChemSusChem 2013, 6, 746789.

  • 12.

    See, for example: (a) Go, A. W.; Nguyen, P. L. T.; Huynh, L. H.; Liu, Y.-T.; Sutanto, S.; Ju, Y. H. Energy 2014, 70, 393400;

  • (b)

    Geuens, J.; Sergeyev, S.; Maes, B. U. W.; Tavernier, S. M. F. Renewable Energy 2014, 68, 524528.

  • 13.

    See, for example: (a) Gonzalez, S. L.; Sychoski, M. M.; Navarro-Díaz, H. J.; Callejas, N.; Saibene, M.; Vieitez, I.; Jachmanián, I.; Da Silva, C.; Hense, H.; Oliveira, J. V. Energy Fuels 2013, 27, 52535259;

    • Search Google Scholar
    • Export Citation
  • (b)

    Olivares-Carrillo, P.; Quesada-Medina, J. J. Supercrit. Fluids 2011, 58, 378384;

  • (c)

    Geuens, J.; Kremsner, J. M.; Nebel, B. A.; Schober, S.; Dommisse, R. A.; Mittelbach, M.; Tavernier, S.; Kappe, C. O.; Maes, B. U. W. Energy Fuels 2008, 22, 643645.

    • Search Google Scholar
    • Export Citation
  • 14.

    Razzaq, T. Glasnov, T. N.; Kappe, C. O. Eur. J. Org. Chem. 2009, 13211325.

  • 15.

    de Araujo Abdala, A. C.; dos Santos Garcia, V. A.; Trentini, C. P.; Filho, L. C.; da Silva, E. A.; da Silva, C. Int. J. Chem. Eng. 2014, 2014, 803783.

    • Search Google Scholar
    • Export Citation
  • 16.

    Vapourtec. http://www.vapourtec.co.uk (accessed February 16, 2015).