Flow chemistry has emerged as the enabling field of high-throughput, data-driven discovery, and process chemistry, yet solids handling remains its key challenge. Insoluble salt by-products can stop flow, fluctuate reagent concentrations in reactors, and cost unexpected time and materials consumptions. The clogging of perfluoroalkoxy (PFA) tubing, stainless steel (SS) tubing, and a silicon microreactor by NaCl during a Pd-catalyzed amination using XPhos ligand was each studied. Our goal of understanding the appropriate reactor design provides in-depth analyses of constriction and mechanical entrapment. Calculations of Stokes number (St)>1 revealed that NaCl particle depositions were independent of the reactor materials. Analyses of the clogging time’s dependence on the residence time (τ) and particle volume fraction (ϕ) discovered commercial tubing to be inadequate for the decoupling of the kinetics. The results prescribe why fabricated microreactors with on-chip analytics, particle formations and dissolutions, and without fluidic connections are solutions to discover and develop ubiquitous reactions that form inorganic salt by-products.
McMullen, J. P.; Jensen, K. F. Org. Process Res. Dev. 2011, 15, 398–407;
(b)Wong, S.-W.; Berglund, K. D.; Viswanath, S. K. Org. Process Res. Dev. 2014, 18, 1391–1399;
Chanda, A.; Daly, A. M.; Foley, D. A.; LaPack, M. A.; Mukherjee, S.; Orr, J. D.; Reid, G. L.; Thompson, D. R.; Ward, H. W. Org. Process Res. Dev. 2014; 19, 63–83;
Hessel, V.; Kralisch, D.; Kockmann, N.; Noel, T.; Wang, Q. ChemSusChem 2013, 6, 746–789.
Wu, K.; Kuhn, S. Chim. Oggi.-Chem. Today 2014, 32, 62–66;
Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28, 318–323;
Song, L. F.; Elimelech, M. J. Colloid Interf. Sci. 1994, 167, 301–313.
Marshall, J. K.; Kitchener, J. A. J. Colloid Interf. Sci. 1966, 22, 342–351.
Ramachandran, V.; Fogler, H. S. Langmuir 1998, 14, 4435–4444;
Ramachandran, V.; Fogler, H. S. J. Fluid Mech. 1999, 385, 129–156;
Wyss, H. M.; Blair, D. L.; Morris, J. F.; Stone, H. A.; Weitz, D. A. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 2006, 74, 061402.
Kockmann, N.; Kastner, J.; Woias, P. Chem. Eng. J. 2008, 135, S110–S116;
Georgieva, K.; Dijkstra, D. J.; Fricke, H.; Willenbacher, N. J. Colloid Interf. Sci. 2010, 352, 265–277.
Hartman, R. L.; Naber, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F. Org. Process Res. Dev. 2010, 14, 1347–1357.
Vitthal, S.; Sharma, M. M. J. Colloid Interf. Sci. 1992, 153, 314–336.
Serra, C. A.; Khan, I. U.; Chang, Z. Q.; Bouquey, M.; Muller, R.; Kraus, I.; Schmutz, M.; Vandamme, T.; Anton, N.; Ohm, C.; Zentel, R.; Knauer, A.; Kohler, M. J. Flow Chem. 2013, 3, 66–75;
Kraus, I.; Li, S. N.; Knauer, A.; Schmutz, M.; Faerber, J.; Serra, C. A.; Koohler, M. J. Flow Chem. 2014, 4, 72–78;
Steinbacher, J. L.; Lui, Y. K.; Mason, B. P.; Olbricht, W. L.; McQuade, D. T. J. Flow Chem. 2012, 2, 56–U41;
Noel, T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.; Jensen, K. F.; Buchwald, S. L. Chem. Sci. 2011, 2, 287–290;
Noël, T.; Kuhn, S.; Musacchio, A. J.; Jensen, K. F.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 5943–5946;
Kuhn, S.; Noel, T.; Gu, L.; Heider, P. L.; Jensen, K. F. Lab Chip 2011, 11, 2488–2492.
Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338–6361;
Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–1449;
Buchwald, S. L.; Jiang, L. In Metal-Catalyzed Cross-Coupling Reactions; deMeijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; p. 699.
Noel, T.; Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 5010–5029;
Naber, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2010, 49, 9469–9474.
Noel, T. In e-EROS Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, 2011, DOI: 10.1002/047084289X.rn01343.
Privman, V.; Frisch, H. L.; Ryde, N.; Matijevic, E. J. Chem. Soc. Far. Trans. 1991, 87, 1371–1375;
Ryde, N.; Kallay, N.; Matijevic, E. J. Chem. Soc. Far. Trans. 1991, 87, 1377–1381;
Elimelech, M.; Gregory, J.; Jia, X.; Williams, R. Particle Deposition and Aggregation. Measurement, Modeling, and Simulation; Butterworth-Hienemann: Woburn, MA, 1995.
Di Carlo, D.; Irimia, D.; Tompkins, R. G.; Toner, M. P. Natl. Acad. Sci. USA 2007, 104, 18892–18897;
Huang, L. R.; Cox, E. C.; Austin, R. H.; Sturm, J. C. Science 2004, 304, 987–990.
Navarro-Brull, F. J.; Poveda, P.; Ruiz-Femenia, R.; Bonete, P.; Ramis, J.; Gomez, R. Green Process. Synth. 2014, 3, 311–320;
Bengtsson, M.; Laurell, T. Anal. Bioanal. Chem. 2004, 378, 1716–1721.
Horie, T.; Sumino, M.; Tanaka, T.; Matsushita, Y.; Ichimura, T.; Yoshida, J. Org. Process Res. Dev. 2010, 14, 405–410;
Valdes, J. R.; Santamarina, J. C. Can. Geotech. J. 2008, 45, 177–184.
Yang, Z.; Goto, H.; Matsumoto, M.; Maeda, R. Electrophoresis 2000, 21, 116–119;
Johansson, L.; Johansson, S.; Nikolajeff, F.; Thorslund, S. Lab Chip 2009, 9, 297–304;
Liu, R. H.; Yang, J. N.; Pindera, M. Z.; Athavale, M.; Grodzinski, P. Lab Chip 2002, 2, 151–157.
Lee, C. L. K.; Sem, Z. Y.; Hendra, H.; Liu, X. Q.; Kwan, W. L. J. Flow Chem. 2013, 3, 114–117.
Thompson, L. H.; Doraiswamy, L. K. Ind. Eng. Chem. Res. 1999, 38, 1215–1249.
Marcati, A.; Serra, C.; Bouquey, M.; Prat, L. Chem. Eng. Tech. 2010, 33, 1779–1787;
Barnes, S. E.; Cygan, Z. T.; Yates, J. K.; Beers, K. L.; Amis, E. J. Analyst 2006, 131, 1027–1033;
Xu, S. Q.; Nie, Z. H.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Angew. Chem., Int. Ed. 2005, 44, 724–728;
Nagasawa, H.; Mae, K. Ind. Eng. Chem. Res. 2006, 45, 2179–2186;
Li, W.; Pharn, H. H.; Nie, Z.; MacDonald, B.; Guenther, A.; Kumacheva, E. J. Am. Chem. Soc. 2008, 130, 9935–9941;
Kuntaegowdanahalli, S. S.; Bhagat, A. A. S.; Kumar, G.; Papautsky, I. Lab Chip 2009, 9, 2973–2980;
Poe, S. L.; Cummings, M. A.; Haaf, M. R.; McQuade, D. T. Angew. Chem., Int. Ed. 2006, 45, 1544–1548.
Goodell, J. R.; McMullen, J. P.; Zaborenko, N.; Maloney, J. R.; Ho, C. X.; Jensen, K. F.; Porco, J. A.; Beeler, A. B. J. Org. Chem. 2009, 74, 6169–6180;
Bedore, M. W.; Zaborenko, N.; Jensen, K. F.; Jamison, T. F. Org. Process Res. Dev. 2010, 14, 432–440.
(a)Wang, J. Y.; Sui, G. D.; Mocharla, V. P.; Lin, R. J.; Phelps, M. E.; Kolb, H. C.; Tseng, H. R. Angew. Chem., Int. Ed. 2006, 45, 5276–5281;
Treece, J. L.; Goodell, J. R.; Velde, D. V.; Porco, J. A.; Aube, J. J. Org. Chem. 2010, 75, 2028–2038.
Tiggelaar, R. M.; Benito-Lopez, F.; Hermes, D. C.; Rathgen, H.; Egberink, R. J. M.;Mugele, F. G.; Reinhoudt, D. N.; van den Berg, A.; Verboom, W.; Gardeniers, H. Chem. Eng. J. 2007, 131, 163–170;
Kuhn, S.; Hartman, R. L.; Sultana, M.; Nagy, K. D.;Marre, S.; Jensen, K. F. Langmuir 2011, 27, 6519–6527.
Marre, S.; Adamo, A.; Basak, S.; Aymonier, C.; Jensen, K. F. Ind. Eng. Chem. Res. 2010, 49, 11310–11320;
Trachsel, F.; Hutter, C.; von Rohr, P. R. Chem. Eng. J. 2008, 135 (Supplement 1), S309–S316.
Feke, D. L.; Prabhu, N. D.; Mann, J. A.; Mann, J. A. J. Phys. Chem. 1984, 88, 5735–5739;
Schenkel, J. H.; Kitchener, J. A. Trans. Faraday Soc. 1960, 56,
161.
Monson, L.; Moon, S. I.; Extrand, C. W. J. Appl. Polym. Sci. 2013, 127, 1637–1642;
Ebnesajjad, S.; Khaladkar, P. R. Fluoropolymers Applications in Chemical Processing Industries: The Definitive User’s Guide and Databook; William Andrew Publishing: Norwich, NY, 2004;
Lorber, N.; Sarrazin, F.; Guillot, P.; Panizza, P.; Colin, A.; Pavageau, B.; Hany, C.; Maestro, P.; Marre, S.; Delclos, T.; Aymonier, C.; Subra, P.; Prat, L.; Gourdon, C.; Mignard, E. Lab Chip 2011, 11, 779–787.
Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 7502–7519.
Yen, B. K. H. Microfluidic Reactors for the Synthesis of Nanocrystals. Massachusetts Institute of Technology: Cambridge, MA, 2007.