Authors:
Yizheng Chen The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States

Search for other papers by Yizheng Chen in
Current site
Google Scholar
PubMed
Close
,
Jasmine C. Sabio The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States

Search for other papers by Jasmine C. Sabio in
Current site
Google Scholar
PubMed
Close
, and
Ryan L. Hartman The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States

Search for other papers by Ryan L. Hartman in
Current site
Google Scholar
PubMed
Close
Restricted access

Flow chemistry has emerged as the enabling field of high-throughput, data-driven discovery, and process chemistry, yet solids handling remains its key challenge. Insoluble salt by-products can stop flow, fluctuate reagent concentrations in reactors, and cost unexpected time and materials consumptions. The clogging of perfluoroalkoxy (PFA) tubing, stainless steel (SS) tubing, and a silicon microreactor by NaCl during a Pd-catalyzed amination using XPhos ligand was each studied. Our goal of understanding the appropriate reactor design provides in-depth analyses of constriction and mechanical entrapment. Calculations of Stokes number (St)>1 revealed that NaCl particle depositions were independent of the reactor materials. Analyses of the clogging time’s dependence on the residence time (τ) and particle volume fraction (ϕ) discovered commercial tubing to be inadequate for the decoupling of the kinetics. The results prescribe why fabricated microreactors with on-chip analytics, particle formations and dissolutions, and without fluidic connections are solutions to discover and develop ubiquitous reactions that form inorganic salt by-products.

  • 1. (a)

    McMullen, J. P.; Jensen, K. F. Org. Process Res. Dev. 2011, 15, 398407;

  • (b)Wong, S.-W.; Berglund, K. D.; Viswanath, S. K. Org. Process Res. Dev. 2014, 18, 13911399;

  • (c)

    Chanda, A.; Daly, A. M.; Foley, D. A.; LaPack, M. A.; Mukherjee, S.; Orr, J. D.; Reid, G. L.; Thompson, D. R.; Ward, H. W. Org. Process Res. Dev. 2014; 19, 6383;

    • Search Google Scholar
    • Export Citation
  • (d)

    Wiles, C.; Watts, P. Green Chem. 2012, 14, 3854;

  • (e)

    Wiles, C.; Watts, P. Chem. Commun. 2011, 47, 65126535;

  • (f)

    Wiles, C.; Watts, P. Green Chem. 2014, 16, 5562;

  • (g)

    Hessel, V.; Kralisch, D.; Kockmann, N.; Noel, T.; Wang, Q. ChemSusChem 2013, 6, 746789.

  • 2. (a)

    Wu, K.; Kuhn, S. Chim. Oggi.-Chem. Today 2014, 32, 6266;

  • (b)

    Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28, 318323;

  • (c)

    Hartman, R. L. Org. Process Res. Dev. 2012, 16, 870887.

  • 3.

    Song, L. F.; Elimelech, M. J. Colloid Interf. Sci. 1994, 167, 301313.

  • 4.

    Marshall, J. K.; Kitchener, J. A. J. Colloid Interf. Sci. 1966, 22, 342351.

  • 5. (a)

    Ramachandran, V.; Fogler, H. S. Langmuir 1998, 14, 44354444;

  • (b)

    Ramachandran, V.; Fogler, H. S. J. Fluid Mech. 1999, 385, 129156;

  • (c)

    Wyss, H. M.; Blair, D. L.; Morris, J. F.; Stone, H. A.; Weitz, D. A. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 2006, 74, 061402.

  • 6. (a)

    Kockmann, N.; Kastner, J.; Woias, P. Chem. Eng. J. 2008, 135, S110–S116;

  • (b)

    Georgieva, K.; Dijkstra, D. J.; Fricke, H.; Willenbacher, N. J. Colloid Interf. Sci. 2010, 352, 265277.

  • 7.

    Hartman, R. L.; Naber, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F. Org. Process Res. Dev. 2010, 14, 13471357.

  • 8.

    Vitthal, S.; Sharma, M. M. J. Colloid Interf. Sci. 1992, 153, 314336.

  • 9. (a)

    Serra, C. A.; Khan, I. U.; Chang, Z. Q.; Bouquey, M.; Muller, R.; Kraus, I.; Schmutz, M.; Vandamme, T.; Anton, N.; Ohm, C.; Zentel, R.; Knauer, A.; Kohler, M. J. Flow Chem. 2013, 3, 6675;

    • Search Google Scholar
    • Export Citation
  • (b)

    Kraus, I.; Li, S. N.; Knauer, A.; Schmutz, M.; Faerber, J.; Serra, C. A.; Koohler, M. J. Flow Chem. 2014, 4, 7278;

  • (c)

    Steinbacher, J. L.; Lui, Y. K.; Mason, B. P.; Olbricht, W. L.; McQuade, D. T. J. Flow Chem. 2012, 2, 56–U41;

  • (d)

    Noel, T.; Naber, J. R.; Hartman, R. L.; McMullen, J. P.; Jensen, K. F.; Buchwald, S. L. Chem. Sci. 2011, 2, 287290;

  • (e)

    Noël, T.; Kuhn, S.; Musacchio, A. J.; Jensen, K. F.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 59435946;

  • (f)

    Kuhn, S.; Noel, T.; Gu, L.; Heider, P. L.; Jensen, K. F. Lab Chip 2011, 11, 24882492.

  • 10. (a)

    Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 63386361;

  • (b)

    Hartwig, J. F. Acc. Chem. Res. 2008, 41, 15341544;

  • (c)

    Marion, N.; Nolan, S. P. Acc. Chem. Res. 2008, 41, 14401449;

  • (d)

    Buchwald, S. L.; Jiang, L. In Metal-Catalyzed Cross-Coupling Reactions; deMeijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; p. 699.

    • Search Google Scholar
    • Export Citation
  • 11. (a)

    Noel, T.; Buchwald, S. L. Chem. Soc. Rev. 2011, 40, 50105029;

  • (b)

    Naber, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2010, 49, 94699474.

  • 12.

    Noel, T. In e-EROS Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, 2011, DOI: 10.1002/047084289X.rn01343.

    • Search Google Scholar
    • Export Citation
  • 13. (a)

    Privman, V.; Frisch, H. L.; Ryde, N.; Matijevic, E. J. Chem. Soc. Far. Trans. 1991, 87, 13711375;

  • (b)

    Ryde, N.; Kallay, N.; Matijevic, E. J. Chem. Soc. Far. Trans. 1991, 87, 13771381;

  • (c)

    Elimelech, M.; Gregory, J.; Jia, X.; Williams, R. Particle Deposition and Aggregation. Measurement, Modeling, and Simulation; Butterworth-Hienemann: Woburn, MA, 1995.

    • Search Google Scholar
    • Export Citation
  • 14. (a)

    Di Carlo, D.; Irimia, D.; Tompkins, R. G.; Toner, M. P. Natl. Acad. Sci. USA 2007, 104, 1889218897;

  • (b)

    Huang, L. R.; Cox, E. C.; Austin, R. H.; Sturm, J. C. Science 2004, 304, 987990.

  • 15.

    Flowers, B. S.; Hartman, R. L. Challenges 2012, 3, 194211.

  • 16. (a)

    Navarro-Brull, F. J.; Poveda, P.; Ruiz-Femenia, R.; Bonete, P.; Ramis, J.; Gomez, R. Green Process. Synth. 2014, 3, 311320;

  • (b)

    Bengtsson, M.; Laurell, T. Anal. Bioanal. Chem. 2004, 378, 17161721.

  • 17. (a)

    Horie, T.; Sumino, M.; Tanaka, T.; Matsushita, Y.; Ichimura, T.; Yoshida, J. Org. Process Res. Dev. 2010, 14, 405410;

  • (b)

    Valdes, J. R.; Santamarina, J. C. Can. Geotech. J. 2008, 45, 177184.

  • 18.

    Mason, T. J. Chem. Soc. Rev. 1997, 26, 443451.

  • 19. (a)

    Yang, Z.; Goto, H.; Matsumoto, M.; Maeda, R. Electrophoresis 2000, 21, 116119;

  • (b)

    Johansson, L.; Johansson, S.; Nikolajeff, F.; Thorslund, S. Lab Chip 2009, 9, 297304;

  • (c)

    Spengler, J.; Jekel, M. Ultrasonics 2000, 38, 624628;

  • (d)

    Liu, R. H.; Yang, J. N.; Pindera, M. Z.; Athavale, M.; Grodzinski, P. Lab Chip 2002, 2, 151157.

  • 20.

    Lee, C. L. K.; Sem, Z. Y.; Hendra, H.; Liu, X. Q.; Kwan, W. L. J. Flow Chem. 2013, 3, 114117.

  • 21.

    Thompson, L. H.; Doraiswamy, L. K. Ind. Eng. Chem. Res. 1999, 38, 12151249.

  • 22. (a)

    Marcati, A.; Serra, C.; Bouquey, M.; Prat, L. Chem. Eng. Tech. 2010, 33, 17791787;

  • (b)

    Barnes, S. E.; Cygan, Z. T.; Yates, J. K.; Beers, K. L.; Amis, E. J. Analyst 2006, 131, 10271033;

  • (c)

    Xu, S. Q.; Nie, Z. H.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Angew. Chem., Int. Ed. 2005, 44, 724728;

    • Search Google Scholar
    • Export Citation
  • (d)

    Nagasawa, H.; Mae, K. Ind. Eng. Chem. Res. 2006, 45, 21792186;

  • (e)

    Li, W.; Pharn, H. H.; Nie, Z.; MacDonald, B.; Guenther, A.; Kumacheva, E. J. Am. Chem. Soc. 2008, 130, 99359941;

  • (f)

    Kuntaegowdanahalli, S. S.; Bhagat, A. A. S.; Kumar, G.; Papautsky, I. Lab Chip 2009, 9, 29732980;

  • (g)

    Yamada, M.; Seki, M. Lab Chip 2005, 5, 12331239;

  • (h)

    Poe, S. L.; Cummings, M. A.; Haaf, M. R.; McQuade, D. T. Angew. Chem., Int. Ed. 2006, 45, 15441548.

  • 23. (a)

    Goodell, J. R.; McMullen, J. P.; Zaborenko, N.; Maloney, J. R.; Ho, C. X.; Jensen, K. F.; Porco, J. A.; Beeler, A. B. J. Org. Chem. 2009, 74, 61696180;

    • Search Google Scholar
    • Export Citation
  • (b)

    Bedore, M. W.; Zaborenko, N.; Jensen, K. F.; Jamison, T. F. Org. Process Res. Dev. 2010, 14, 432440.

  • 24.

    (a)Wang, J. Y.; Sui, G. D.; Mocharla, V. P.; Lin, R. J.; Phelps, M. E.; Kolb, H. C.; Tseng, H. R. Angew. Chem., Int. Ed. 2006, 45, 52765281;

    • Search Google Scholar
    • Export Citation
  • (b)

    Treece, J. L.; Goodell, J. R.; Velde, D. V.; Porco, J. A.; Aube, J. J. Org. Chem. 2010, 75, 20282038.

  • 25. (a)

    Tiggelaar, R. M.; Benito-Lopez, F.; Hermes, D. C.; Rathgen, H.; Egberink, R. J. M.;Mugele, F. G.; Reinhoudt, D. N.; van den Berg, A.; Verboom, W.; Gardeniers, H. Chem. Eng. J. 2007, 131, 163170;

    • Search Google Scholar
    • Export Citation
  • (b)

    Calabrese,G. S. ; Pissavini, S. AIChE J. 2011, 57, 828834.

  • 26.

    Jensen, K. F. MRS Bull. 2006, 31, 101107.

  • 27.

    Kuhn, S.; Hartman, R. L.; Sultana, M.; Nagy, K. D.;Marre, S.; Jensen, K. F. Langmuir 2011, 27, 65196527.

  • 28. (a)

    Marre, S.; Adamo, A.; Basak, S.; Aymonier, C.; Jensen, K. F. Ind. Eng. Chem. Res. 2010, 49, 1131011320;

  • (b)

    Trachsel, F.; Hutter, C.; von Rohr, P. R. Chem. Eng. J. 2008, 135 (Supplement 1), S309S316.

  • 29. (a)

    Feke, D. L.; Prabhu, N. D.; Mann, J. A.; Mann, J. A. J. Phys. Chem. 1984, 88, 57355739;

  • (b)

    Schenkel, J. H.; Kitchener, J. A. Trans. Faraday Soc. 1960, 56,

  • 161.

  • 30. (a)

    Monson, L.; Moon, S. I.; Extrand, C. W. J. Appl. Polym. Sci. 2013, 127, 16371642;

  • (b)

    Ebnesajjad, S.; Khaladkar, P. R. Fluoropolymers Applications in Chemical Processing Industries: The Definitive User’s Guide and Databook; William Andrew Publishing: Norwich, NY, 2004;

    • Search Google Scholar
    • Export Citation
  • (c)

    Tubing. IDEX Health & Science: 2014; pp. 6189;

  • (d)

    DuPont™ Teflon® PFA Fluoroplastic Film. DuPont: 2013; p. 3;

  • (e)

    DuPont™ Teflon® FEP Fluoroplastic Film. DuPont: 2013; p. 4.

  • 31.

    Lorber, N.; Sarrazin, F.; Guillot, P.; Panizza, P.; Colin, A.; Pavageau, B.; Hany, C.; Maestro, P.; Marre, S.; Delclos, T.; Aymonier, C.; Subra, P.; Prat, L.; Gourdon, C.; Mignard, E. Lab Chip 2011, 11, 779787.

    • Search Google Scholar
    • Export Citation
  • 32.

    Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 75027519.

  • 33.

    Yen, B. K. H. Microfluidic Reactors for the Synthesis of Nanocrystals. Massachusetts Institute of Technology: Cambridge, MA, 2007.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 51 0 0
Nov 2024 21 0 0
Dec 2024 13 0 0
Jan 2025 19 0 0
Feb 2025 39 0 0
Mar 2025 16 0 0
Apr 2025 0 0 0