The microreaction technology which is an interdisciplinary science and engineering, have attracted attention in many fields in the past years. Several microreactors have been developed. Enzyme is one of the catalysts, which is useful in substance production in an environmentally friendly way, and has high potential for the preparation of chiral compounds. These features are suitable for pharmaceutical process. However, not so many enzymatic processes were commercialized, because of problems in stability of enzyme molecule, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering particularly for enzymatic reactions, and microreaction devices can be a strong tool for the development of enzyme processes. In this minireview, we summarize fundamental immobilization techniques to develop enzyme microreactor. Some important applications of this technology toward the chemical processing are also included.
Ehrfeld, W.; Hessel, V.; Lowe, H. Microreactors-New Technology for Modern Chemistry; Wiley-VCH, Weinheim, Germany, 2000.
Ziaie, B.; Baldia, A.; Leia, M.; Guc, Y.; Siegelb, R. A. Adv. Drug Delivery Rev. 2004, 56, 145–172.
Hessel, V.; Hardt, S.; Lowe, H. Chemical Micro Process Engineering. Wiley-VCH, Weinheim, Germany, 2004.
Chován, T.; Guttman, A. Trends Biotechnol. 2002, 20, 116–122.
Andersson, H.; van den Berg, A. Sens. Actuators. B 2003, 92, 315–325.
Cullen, C. J.;Wootton, R. C.; De Mello, A. J. Curr. Opin. Drug Discovery Dev. 2004, 7, 798–806.
Wirth, T. Microreactor in Organic Chemistry and Catalysis, 2nd edn.; Wiley-VCH, Weinheim, 2013.
Miyazaki, M.; Maeda, H. Trends Biotechnol. 2006, 24, 463–470.
Schoemaker, H. E.; Mink, D.; Wubbolts, M. G. Science 2003, 299, 1694–1697.
García-Junceda, E.; García-García, J. F.; Bastida, A.; Fernández-Mayoralas, A. Bioorg. Med. Chem. 2004, 12, 1817–1834.
Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Nature 2001, 409, 258–268.
Wohlgemuth, R.; Plazl, I.; Žnidaršič-Plazl, P.; Gernaey, K.; Woodley, J. Trends Biotechnol. 2015, 33, 302–315.
Richter, T.; Shultz-Lockyear, L. L.; Oleschuk, R. D.; Bilitewski, U.; Harrison, D. J. Sens Actuators, B 2002, 81, 369–376.
Seong, G. H.; Crooks, R. M. J. Am. Chem. Soc. 2002, 124, 13360–13361.
Srinivasan, A.; Bach, H.; Sherman, D. H.; Dordick, J. S. Biotechnol. Bioeng. 2004, 88, 528–535.
Dräger, G.; Kiss, C.; Kunz, U.; Kirschning, A. Org. Biomol. Chem. 2007, 5, 3657–3664.
Nomura, A.; Shin, S.; Mehdi, O. O.; Kauffmann, J.-M. Anal. Chem. 2004, 76, 5498–5502.
Li, Y.; Xu, X.; Yan, B.; Deng, C.; Yu, W.; Yang, P.; Zhang, X. J. Proteome Res. 2007, 6, 2367–2375.
Baeza, M.; López, C.; Alonso, J.; López-Santín, J.; Alvaro, G. Anal. Chem. 2010, 82, 1006–1011.
Sakai-Kato, K.; Kato, M.; Toyo'oka, T. Anal. Chem. 2003, 75, 388–393.
Sakai-Kato, K.; Kato, M.; Ishihara, K.; Toyo'oka, T. Lab Chip 2004, 4, 4–6.
Kawakami, K.; Sera, Y.; Sakai, S.; Ono, T.; Ijima, H. Ind. Eng. Chem. Res. 2005, 44, 236–240.
Koh, W.-G.; Pishko, M. Sens. Actuators. B 2005, 106, 335–342.
Jeong, W. J.; Kim, J. Y.; Choo, J.; Lee, E. K.; Han, C. S.; Beebe, D. J.; Seong, G. H.; Lee, S. H. Langmuir 2005, 21, 3738–3741.
Nakagawa, K.; Tamura, A.; Chaiya, C. Chem. Eng. Sci. 2014, 119, 22–29.
He, P.; Greenway, G.; Haswell, S. J. Microfluid. Nanofluid. 2010, 8, 565–573.
Miyazaki, M.; Kaneno, J.; Uehara, M.; Fujii, M.; Shimizu, H.; Maeda, H. Chem. Commun. 2003, 648–649.
Kaneno, J.; Kohama, R.; Miyazaki, M.; Uehara, M.; Kanno, K.; Fujii, M.; Shimizu, H.; Maeda, H. New J. Chem. 2003, 27, 1765–1768.
Miyazaki, M.; Kaneno, J.; Kohama, R.; Uehara, M.; Kanno, K.; Fujii, M.; Shimizu, H.; Maeda, H. Chem. Eng. J. 2004, 101, 277–284.
Miyazaki, M.; Kaneno, J.; Yamaori, S.; Honda, T.; Briones, M. P. P.; Uehara, M.; Arima K.; Kanno, K.; Yamashita, K.; Yamaguchi, Y.; Nakamura, H.; Yonezawa, H.; Fujii, M.; Maeda, H. Protein Pept. Lett. 2005, 12, 207–210.
Gao, J.; Xu, J.; Locascio, L. E.; Lee, C. S. Anal. Chem. 2001, 73, 2648–2655.
Hisamoto, H.; Shimizu, Y.; Uchiyama, K.; Tokeshi, M.; Kikutani, Y.; Hibara, A.; Kitamori, T. Anal. Chem. 2003, 75, 350–354.
Honda, T.; Miyazaki, M.; Nakamura, H.; Maeda, H. Chem. Commun. 2005, 5062–5064.
Sheldon, R. A. Appl. Microbiol. Biotechnol. 2011, 92, 467–477.
Honda, T.; Miyazaki, M.; Nakamura, H.; Maeda, H. Adv. Synth. Catal. 2006, 348, 2163–2171.
Cao, L.; Schmid, R. D. Carrier-Bound Immobilized Enzymes: Principles, Applications and Design, Weinheim, Wiley-VCH Verlag GmbH, 2005.
Liang, R.-P.; Wang, X.-N.; Liu, C.-M.; Meng, X.-Y.; Qiu, J. D. J. Chromatogr. A 2013, 1315, 28–35.
Elleuche, S.; Schröder, C.; Sahm, K.; Antranikian, G. Curr. Opin. Biotechnol. 2014, 29, 116–123.
Steffansen, B.; Nielsen, C. U.; Frokjaer, S. Eur. J. Pharm. Biopharm. 2005, 60, 241–245.
Nuijens, T.; Cusan, C.; Schepers, C. H. M.; Kruijtzer, J.A.W.; Rijkers, D. T. S.; Liskamp, R. M. J.; Quaedflieg, P. J. L. M. J. Mol. Catal. B: Enzym. 2011, 71, 79–84.
Xu, D. Y.; Chen, J. Y.; Yang, Z. Biochem. Eng. J. 2011, 63, 88–94.
Truppo, M. D.; Hughes, G. Org Process Res Dev 2011, 15, 1033–1035.
Li, Q.; Fan, F.; Wang, Y.; Feng, W.; Ji, P. Ind. Eng. Chem. Res. 2013, 52, 6343–6348.
Zhang, F.; Zheng, B.; Zhang, J.; Huang, X.; Liu, H.; Gou, S.; Zhang, J. J. Phys. Chem. C 2010, 114, 8469–8473.
Fernando, B. L.; Morales, G.; Sanz, R. Bioresour. Technol. 2010, 101, 8541–8548.
Lloret, L.; Eibes, G.; Moreira, M. T.; Feijoo, G.; Lema, J. M.; Miyazaki, M. Chem. Eng. J. 2013, 223, 497–506.
Chena, H. C.; Chenb, J. H.; Changc, C.; Shieh, C. J. Ultrason. Sonochem. 2011, 18, 455–459.
Wang, J.; Gu, S. S.; Cui, H. S.; Wu, X. Y.; Wu, F. A. Bioresour. Technol. 2014, 158, 39–47.
Kundu, S.; Bhangale, A. S.; Wallace, W. E.; Flynn, K. M. et al. J. Am. Chem. Soc. 2011, 133, 6006–6011.
Boehm, C. R.; Freemont, P. S.; Ces, O. Lab Chip 2013, 13, 3426–3432.