View More View Less
  • 1 University of Pannonia, Veszprem, Hungary
  • | 2 University of Debrecen, Debrecen, Hungary
Restricted access

The utilization of continuous-flow biochemical reactors, including biocatalysis, biotransformation, and biochemical interaction based flow-analytical systems, and enzyme reactors are recently the focus of attention to produce fine biochemicals and also show great potential in bioanalytical applications. Continuous-flow biochemical processes implemented in microstructured reactors enable short development time to production scale utilizing enzymatic processes to efficiently fulfill the current needs of the fine biochemical and pharmaceutical industry. Immobilization of the enzymes is preferable because it usually enhances their stability, and in some instances, immobilized enzymes can even be reused multiple times. In this review on the continuous-flow biochemical reactors, first the enzyme immobilization strategies will be briefly discussed followed by summarizing the recent developments in the field of immobilized enzyme microflow reactors for biocatalysis, bioconversion and bioanalytical purposes.

  • 1.

    Panke, S.; Held, M.; Wubbolts, M. Curr. Opin. Biotechnol. 2004, 15, 272279.

  • 2.

    Noraini, M. Y.; Ong, H. C.; Badrul, M. J.; Chong, W. T. Renewable Sustainable Energy Rev. 2014, 39, 2434.

  • 3.

    Monzo, A.; Sperling, E.; Guttman, A. TrAc, Trends Anal. Chem. 2009, 28, 854864.

  • 4.

    Fernandes, P. Int. J. Mol. Sci. 2010, 11, 858879.

  • 5.

    Asanomi, Y.; Yamaguchi, H.; Miyazaki, M.; Maeda, H. Molecules 2011, 16, 60416059.

  • 6.

    Franssen, M. C. R.; Steunenberg, P.; Scott, E. L.; Zuilhof, H.; Sanders, J. P. M. Chem. Soc. Rev. 2013, 42, 64916533.

  • 7.

    Tokeshi, M.; Minagawa, T.; Uchiyama, K.; Hibara, A.; Sato, K.; Hisamoto, H.; Kitamori, T. Anal. Chem. 2002, 74, 15651571.

  • 8.

    Miyazaki, M.; Honda, T.; Yamaguchi, H.; Briones, M. P. P.; Maeda, H. Biotechnol. Genet. Eng. Rev. 2008, 25, 405428.

  • 9.

    Losey, M. W.; Schmidt, M. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2001, 40, 25552562.

  • 10.

    Webb, C.; Kang, H. K.; Moffat, G.;Williams, R. A.; Estevez, A. M.; Cuellar, J.; Jaraiz, E.; Galan, M. A. Chem. Eng. J. Biochem. Eng. J. 1996, 61, 241246.

    • Search Google Scholar
    • Export Citation
  • 11.

    Vos, H. J.; Luyben, K. C. A. M.; Westerterp, K. R. Chem. Eng. J. Biochem. Eng. J. 1993, 53, B1–B11.

  • 12.

    Chen, H. C.; Ju, H. Y.; Wu, T. T.; Liu, Y. C.; Lee, C. C.; Chang, C.; Chung, Y. L.; Shieh, C. J. J. Biomed. Biotechnol. 2011, 950725.

  • 13.

    Ronne, T. H.; Yang, T. K.; Mu, H. L.; Jacobsen, C.; Xu, X. B. J. Agric. Food Chem. 2005, 53, 56175624.

  • 14.

    Bolivar, J. M.; Nidetzky, B. Green Process. Synth. 2013, 2, 541559.

  • 15.

    Tanaka, Y.; Slyadnev, M. N.; Sato, K.; Tokeshi, M.; Kim, H. B.; Kitamori, T. Anal. Sci. 2001, 17, 809810.

  • 16.

    Zhang, X. N.; Stefanick, S.; Villani, F. J. Org. Process Res. Dev. 2004, 8, 455460.

  • 17.

    Bolivar, J. M.; Wiesbauer, J.; Nidetzky, B. Trends Biotechnol. 2011, 29, 333342.

  • 18.

    Miyazaki, M.; Maeda, H. Trends Biotechnol. 2006, 24, 463470.

  • 19.

    Woitalka, A.; Kuhn, S.; Jensen, K. F. Chem. Eng. Sci. 2014, 116, 18.

  • 20.

    Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. Ind. Eng. Chem. Res. 2012, 51, 1625116262.

  • 21.

    Dann, E.; Schmidt, F.; Chevalier, B. Chim. Oggi 2009, 27, 1213.

  • 22.

    Kockmann, N.; Gottsponer, M.; Zimmermann, B.; Roberge, D. M. Chem. — Eur. J. 2008, 14, 74707477.

  • 23.

    Zhang, F.; Cerato-Noyerie, C.;Woehl, P.; Lavric, E. D. Chem. Eng. Trans. 2011, 24, 13691374.

  • 24.

    Rodrigues, R. C.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Fernandez-Lafuente, R. Chem. Soc. Rev. 2013, 42, 62906307.

  • 25.

    Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R. Enzyme Microb. Technol. 2007, 40, 14511463.

  • 26.

    Bornscheuer, U. T. Angew. Chem., Int. Ed. 2003, 42, 33363337.

  • 27.

    Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D. Biotechnol. Adv. 2012, 30, 489511.

  • 28.

    Jones, F.; Lu, Z. H.; Elmore, B. B. Appl. Biochem. Biotechnol. 2002, 98, 627640.

  • 29.

    Liu, C.; Zhang, Q.; Kang, J. Methods Mol. Biol. 2013, 984, 321327.

  • 30.

    Ghafourifar, G.; Fleitz, A.; Waldron, K. C. Electrophoresis 2013, 34, 18041811.

  • 31.

    Min, W. N.; Cui, S. M.; Wang, W. P.; Chen, J. R.; Hu, Z. D. Anal. Biochem. 2013, 438, 3238.

  • 32.

    Sassolas, A.; Hayat, A.; Marty, J. L. Methods Mol. Biol. 2013, 1051, 139148.

  • 33.

    Cao, L. Q. Curr. Opin. Chem. Biol. 2005, 9, 217226.

  • 34.

    Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Rodrigues, R. C.; Fernandez-Lafuente, R. RSC Adv. 2014, 4, 15831600.

  • 35.

    Liu, L. N.; Zhang, B.; Zhang, Q.; Shi, Y. H.; Guo, L. P.; Yang, L. J. Chromatogr. A 2014, 1352, 8086.

  • 36.

    Wang, T.; Ma, J.; Wu, S.; Yuan, H.; Zhang, L.; Liang, Z.; Zhang, Y. Electrophoresis 2011, 32, 28482856.

  • 37.

    Wang, T. T.; Ma, J. F.; Zhu, G. J.; Shan, Y. C.; Liang, Z.; Zhang, L. H.; Zhang, Y. K. J. Sep. Sci. 2010, 33, 31943200.

  • 38.

    Hisamoto, H.; Shimizu, Y.; Uchiyama, K.; Tokeshi, M.; Kikutani, Y.; Hibara, A.; Kitamori, T. Anal. Chem. 2003, 75, 350354.

  • 39.

    Shi, J.; Zhao, W. W.; Chen, Y. F.; Guo, L. P.; Yang, L. Electrophoresis 2012, 33, 21452151.

  • 40.

    Sheng, J.; Zhang, L.; Lei, J. P.; Ju, H. X. Anal. Chim. Acta 2012, 709, 4146.

  • 41.

    Luckarift, H. R.; Ku, B. S.; Dordick, J. S.; Spain, J. C. Biotechnol. Bioeng. 2007, 98, 701705.

  • 42.

    Berne, C.; Betancor, L.; Luckarift, H. R.; Spain, J. C. Biomacromolecules 2006, 7, 26312636.

  • 43.

    Schoffer, J. D.; Klein, M. P.; Rodrigues, R. C.; Hertz, P. F. Carbohydr. Polym. 2013, 98, 13111316.

  • 44.

    Koshibu-Koizumi, J.; Akazawa, M.; Iwamoto, T.; Takasaki, M.; Mizuno, F.; Kobayashi, R.; Abe, A.; Tomoda, A.; Hamatake, M.; Ishida, R. J. Cancer Res. Clin. Oncol. 2002, 128, 363368.

    • Search Google Scholar
    • Export Citation
  • 45.

    Tiwari, G.; Tiwari, R.; Rai, A. K. J. Pharm. BioAllied Sci. 2010, 2, 7279.

  • 46.

    Madarasz, J.; Nemeth, D.; Bakos, J.; Gubicza, L.; Bakonyi, P. J. Cleaner Prod. 2015, 93, 140144.

  • 47.

    Tibhe, J. D.; Fu, H.; Noel, T.; Wang, Q.; Meuldijk, J.; Hessel, V. Beilstein J. Org. Chem. 2013, 9, 21682179.

  • 48.

    Thomsen, M. S.; Nidetzky, B. Biotechnol. J. 2009, 4, 98107.

  • 49.

    Tavernier, M. L.; Petit, E.; Delattre, C.; Courtois, B.; Courtois, J.; Strancar, A.; Michaud, P. Carbohydr. Res. 2008, 343, 26872691.

    • Search Google Scholar
    • Export Citation
  • 50.

    Safdar, M.; Spross, J.; Janis, J. J. Mass Spectrom. 2013, 48, 12811284.

  • 51.

    Li, Y.; Xu, X. Q.; Yan, B.; Deng, C. H.; Yu, W. J.; Yang, P. Y.; Zhang, X. M. J. Proteome Res. 2007, 6, 23672375.

  • 52.

    Krenkova, J.; Szekrenyes, A.; Keresztessy, Z.; Foret, F.; Guttman, A. J. Chromatogr. A 2013, 1322, 5461.

  • 53.

    Ekstrom, S.; Onnerfjord, P.; Nilsson, J.; Bengtsson, M.; Laurell, T.; Marko-Varga, G. Anal. Chem. 2000, 72, 286293.

  • 54.

    Ferreira, L. M. C.; da Costa, E. T.; do Lago, C. L.; Angnes, L. Biosens. Bioelectron. 2013, 47, 539544.

  • 55.

    Yamaguchi, H.; Miyazaki, M.; Honda, T.; Briones-Nagata, M. P.; Arima, K.; Maeda, H. Electrophoresis 2009, 30, 32573264.

  • 56.

    Yamaguchi, H.; Miyazaki, M.; Kawazumi, H.; Maeda, H. Anal. Biochem. 2010, 407, 1218.

  • 57.

    Duan, J. C.; Liang, Z.; Yang, C.; Zhang, J.; Zhang, L. H.; Zhang, W. B.; Zhang, Y. K. Proteomics 2006, 6, 412419.

  • 58.

    Yu, D. H.; Van Antwerpen, P.; Patris, S.; Blankert, B.; Kauffmann, J. M. Comb. Chem. High Throughput Screening 2010, 13, 455460.

  • 59.

    Liang, R. P.; Wang, X. N.; Liu, C. M.; Meng, X. Y.; Qiu, J. D. J. Chromatogr. A 2013, 1315, 2835.

  • 60.

    Lin, P. T.; Zhao, S. L.; Lu, X.; Ye, F. G.;Wang, H. S. J. Sep. Sci. 2013, 36, 25382543.

  • 61.

    Roman-Gusetu, G.; Waldron, K. C.; Rochefort, D. J. Chromatogr. A 2009, 1216, 82708276.

Manuscript Submission: HERE

  • Impact Factor (2019): 3.622
  • Scimago Journal Rank (2019): 0.795
  • SJR Hirsch-Index (2019): 20
  • SJR Quartile Score (2019): Q1 Chemistry (miscellenous)
  • SJR Quartile Score (2019): Q1 Fluid Flow and Transfer Processes
  • SJR Quartile Score (2019): Q2 Organic Chemistry
  • Impact Factor (2018): 2.277
  • Scimago Journal Rank (2018): 0.58
  • SJR Hirsch-Index (2018): 17
  • SJR Quartile Score (2018): Q1 Fluid Flow and Transfer Processes
  • SJR Quartile Score (2018): Q2 Organic Chemistry

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)