View More View Less
  • 1 TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
Restricted access

For complete chemical processes, downstream operation steps are essential, but on a miniaturized scale, they are not so far developed as the microreactors. This contribution presents three different unit operations for phase and component separation. Liquid—liquid extraction is often performed in columns, which were miniaturized for higher separation efficiency and flow rates suitable for processes in flow chemistry. Two-phase mass transfer processes in capillaries benefit from rapid final phase separation, which can be performed in an in-line phase splitter based on different surface wetting behavior. Crystallization is often a final purification step, which is performed in a continuously operated helical tube setup with narrow residence time distribution. For all unit operations, design criteria are shown with typical applications. The methodology of downscaling of known equipment and employing typical microscale phenomena such as good flow control, laminar flow, or dominant surface forces leads to successful equipment design.

  • 1.

    Hessel, V.; Kralisch, D.; Kockmann, N. Novel Process Windows: Innovative Gates to Intensified and Sustainable Chemical Processes; Wiley-VCH: Weinheim, 2015.

    • Search Google Scholar
    • Export Citation
  • 2.

    Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q. ChemSus Chem 2013, 6, 746789.

  • 3.

    Kockmann, N.; Gottsponer, M.; Zimmermann, B.; Roberge, D. M. Chem. Eur. J. 2008, 14, 74707477.

  • 4.

    Kockmann, N. Transport Phenomena in Micro Process Engineering, 1st ed.; Springer: Berlin, Heidelberg, 2008.

  • 5.

    Kockmann, N. Chem. Ing. Tech. 2012, 84, 715726.

  • 6.

    Kockmann, N.; Roberge, D. M. Chem. Eng. Technol. 2009, 32, 16821694.

  • 7.

    Hessel, V.; Löwe, H.; Schönfeld, F. Chem. Eng. Sci. 2005, 60, 24792501.

  • 8.

    Nguyen, N.-T.; Wu, Z. J. Micromech. Microeng. 2005, 15, R1–R16.

  • 9.

    Nguyen, N.-T. Micromixers: Fundamentals, Design and Fabrication, 2nd ed.; Elsevier: Amsterdam, 2012.

  • 10.

    Kandlikar, S. G.; Colin, S.; Peles, Y.; Garimella, S.; Pease, R. F.; Brandner, J. J.; Tuckerman, D. B. J. Heat Transfer 2013, 135, 91001.

    • Search Google Scholar
    • Export Citation
  • 11.

    Bošković, D.; Loebbecke, S. Chem. Eng. J. 2008, 135, S138S146.

  • 12.

    Trachsel, F.; Günther, A.; Khan, S.; Jensen, K. F. Chem. Eng. Sci. 2005, 60, 57295737.

  • 13.

    Kockmann, N. Chem. Eng. Technol. 2008, 31, 11881195.

  • 14.

    Schwolow, S.; Heikenwälder, B.; Abahmane, L.; Kockmann, N.; Röder, T. Org. Process Res. Dev. 2014, 18, 15351544.

  • 15.

    Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K. F.; Monbaliu, J.-C. M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R.; Stelzer, T.; Weeranoppanant, N.; Wong, S. Y.; Zhang, P. Science 2016, 352, 6167.

    • Search Google Scholar
    • Export Citation
  • 16.

    Plumb, K. Chem. Eng. Res. Des. 2005, 83, 730738.

  • 17.

    Chen, J.; Sarma, B.; Evans, J. M. B.; Myerson, A. S. Cryst. Growth Des. 2011, 11, 887895.

  • 18.

    Bieringer, T.; Buchholz, S.; Kockmann, N. Chem. Eng. Technol. 2013, 36, 900910.

  • 19.

    Johnson, M. D.; May, S. A.; Calvin, J. R.; Remacle, J.; Stout, J. R.; Diseroad, W. D.; Zaborenko, N.; Haeberle, B. D.; Sun, W.-M.; Miller, M. T.; Brennan, J. Org. Process Res. Dev. 2012, 16, 10171038.

    • Search Google Scholar
    • Export Citation
  • 20.

    Mascia, S.; Heider, P. L.; Zhang, H.; Lakerveld, R.; Benyahia, B.; Barton, P. I.; Braatz, R. D.; Cooney, C. L.; Evans, J. M. B.; Jamison, T. F.; Jensen, K. F.; Myerson, A. S.; Trout, B. L. Angew. Chem., Int. Ed. 2013, 52, 1235912363.

    • Search Google Scholar
    • Export Citation
  • 21.

    Buchholz, S. Flexible, Fast and Future Production Processes (F3 Factory): Final Report. http://f3factory.com/scripts/pages/en/newsevents/ F3_Factory_final_report_to_EC.pdf (accessed May 6, 2016).

  • 22.

    Roberge, D.; Noti, C.; Irle, E.; Eyholzer, M.; Rittiner, B.; Penn, G.; Sedelmeier, G.; Schenkel, B. J. Flow Chem. 2015, 4, 2634.

  • 23.

    Kockmann, N. ChemBioEng Rev. 2016, 3, 515.

  • 24.

    Kockmann, N. Chem. Ing. Tech. 2015, 87, 11731184.

  • 25.

    Bramsiepe, C.; Krasberg, N.; Fleischer, C.; Hohmann, L.; Kockmann, N.; Schembecker, G. Chem. Ing. Tech. 2014, 86, 966981.

  • 26.

    Krasberg, N.; Hohmann, L.; Bieringer, T.; Bramsiepe, C.; Kockmann, N. Processes 2014, 2, 265292.

  • 27.

    Wolter, C.; Röhm, H.-J. Chem. Ing. Tech. 2007, 79, 1378.

  • 28.

    Vural Gürsel, I.; Noël, T.; Wang, Q.; Hessel, V. Green Chem. 2015, 17, 20122026.

  • 29.

    Dai, C.; Snead, D. R.; Zhang, P.; Jamison, T. F. J. Flow Chem. 2015, 5, 133138.

  • 30.

    Baxendale, I. R.; Ley, S. V. Ind. Eng. Chem. Res. 2005, 44, 85888592.

  • 31.

    Hopkin, M. D.; Baxendale, I. R.; Ley, S. V. Org. Biomol. Chem. 2013, 11, 18221839.

  • 32.

    Günther, A.; Jensen, K. F. Lab Chip 2006, 6, 14871503.

  • 33.

    Doku, G. N.; Verboom, W.; Reinhoudt, D. N.; van den Berg, A. Tetrahedron 2005, 61, 27332742.

  • 34.

    Kashid, M. N.; Kiwi-Minsker, L. Eng. Chem. Res. 2009, 48, 64656485.

  • 35.

    Gelhausen, M. G.; Kurt, S. K.; Kockmann, N. Chem. Ing. Tech. 2015, 87, 781790.

  • 36.

    Schneider, M.-A.; Maeder, T.; Ryser, P.; Stoessel, F. Chem. Eng. J. 2004, 101, 241250.

  • 37.

    Nieves-Remacha, M. J.; Jensen, K. F. J. Flow Chem. 2015, 5, 160165.

  • 38.

    Bleie, O.; Roberto, M. F.; Dearing, T. I.; Branham, C. W.; Kvalheim, O. M.; Marquardt, B. J. J. Flow Chem. 2015, 5, 183189.

  • 39.

    Chen, Y.; Sabio, J. C.; Hartman, R. L. J. Flow Chem. 2015, 5, 166171.

  • 40.

    Henley, E. J.; Seader, J. D.; Roper, D. K. Separation Process Principles, 3rd ed.; Wiley: Hoboken, 2011.

  • 41.

    Holbach, A.; Kockmann, N. Green Process. Synth. 2013, 2, 157167.

  • 42.

    Jaritsch, D.; Holbach, A.; Kockmann, N. J. Fluids Eng. 2014, 136, 91211.

  • 43.

    Lan, W.; Jing, S.; Li, S.; Luo, G. Ind. Eng. Chem. Res. 2016.

  • 44.

    NiTech® Solutions Ltd. http://www.nitechsolutions.co.uk/ (accessed June 14, 2016).

  • 45.

    Caldeira, R.; Ni, X.-W. Org. Process Res. Dev. 2009, 13, 10801087.

  • 46.

    Ni, X.-W. Continuous Crystallisation and Manufacture; ACHEMA 2015, Frankfurt a.M., DE, 2015. http://www.nitechsolutions.co.uk/wp-content/ uploads/2015/06/Achema-20 2015.pdf (accessed December 23, 2015).

  • 47.

    Lawton, S.; Steele, G.; Shering, P.; Zhao, L.; Laird, I.; Ni, X.-W. Org. Process Res. Dev. 2009, 13, 13571363.

  • 48.

    McGlone, T.; Briggs, N. E. B.; Clark, C. A.; Brown, C. J.; Sefcik, J.; Florence, A. J. Org. Process Res. Dev. 2015, 19, 11861202.

  • 49.

    Briggs, N. E. B.; Schacht, U.; Raval, V.; McGlone, T.; Sefcik, J.; Florence, A. J. Org. Process Res. Dev. 2015, 19, 19031911.

  • 50.

    Siddique, H.; Brown, C. J.; Houson, I.; Florence, A. J. Org. Process Res. Dev. 2015, 19, 18711881.

  • 51.

    Holbach, A.; Çalışkan, E.; Lee, H.-S.; Kockmann, N. Chem. Eng. Process. 2014, 80, 2128.

  • 52.

    Holbach, M. A. Enantioselective Liquid–Liquid Extraction in Process Intensified Extraction Columns. Dissertation, Dr. Hut, München, 2015.

    • Search Google Scholar
    • Export Citation
  • 53.

    Sindermann, E. C.; Holbach, A.; Haan, A. de; Kockmann, N. Chem. Eng. J. 2016, 283, 251259.

  • 54.

    van Putten, R.-J.; van der Waal, Jan C.; de Jong, E.; Rasrendra, C. B.; Heeres, H. J.; de Vries, J. G. Chem. Rev. 2013, 113, 14991597.

    • Search Google Scholar
    • Export Citation
  • 55.

    Torres, A. I.; Daoutidis, P.; Tsapatsis, M. Energy Environ. Sci. 2010, 3, 1560.

  • 56.

    Holbach, A.; Godde, J.; Mahendrarajah, R.; Kockmann, N. AIChE J. 2015, 61, 266276.

  • 57.

    Holbach, A.; Soboll, S.; Schuur, B.; Kockmann, N. Ind. Eng. Chem. Res. 2015, 54, 82668276.

  • 58.

    Aota, A.; Nonaka, M.; Hibara, A.; Kitamori, T. Angew. Chem., Int. Ed. 2007, 46, 878880.

  • 59.

    Kolb, P. Hydrodynamics and Mass Transfer in an Agitated Miniplant Extractor Type Kühni. Dissertation, TU Kaiserslautern, 2005.

  • 60.

    Prinz, A.; Koch, K.; Górak, A.; Zeiner, T. Process Biochem. 2014, 49, 10201031.

  • 61.

    Kashid, M. N.; Renken, A.; Kiwi-Minsker, L. Chem. Eng. Sci. 2011, 66, 38763897.

  • 62.

    Fries, D. M.; Voitl, T.; von Rohr, P. R. Chem. Eng. Technol. 2008, 31, 11821187.

  • 63.

    Darekar, M.; Sen, N.; Singh, K. K.; Mukhopadhyay, S.; Shenoy, K. T.; Ghosh, S. K. Hydrometallurgy 2014, 144145, 54–62.

  • 64.

    Kim, H.-B.; Ueno, K.; Chiba, M.; Kogi, O.; Kitamura, N. Anal. Sci. 2000, 16, 871876.

  • 65.

    Zhao, C.-X.; Middelberg, A. P. Chem. Eng. Sci. 2011, 66, 13941411.

  • 66.

    Dessimoz, A.-L.; Cavin, L.; Renken, A.; Kiwi-Minsker, L. Chem. Eng. Sci. 2008, 63, 40354044.

  • 67.

    Kurt, S. K.; Vural Gürsel, I.; Hessel, V.; Nigam, K. D.; Kockmann, N. Chem. Eng. J. 2016, 284, 764777.

  • 68.

    Benz, K.; Jäckel, K.-P.; Regenauer, K.-J.; Schiewe, J.; Drese, K.; Ehrfeld, W.; Hessel, V.; Löwe, H. Chem. Eng. Technol. 2001, 24, 1117.

    • Search Google Scholar
    • Export Citation
  • 69.

    Kolehmainen, E.; Turunen, I. Chem. Eng. Process. 2007, 46, 834839.

  • 70.

    Kralj, J. G.; Sahoo, H. R.; Jensen, K. F. Lab Chip 2007, 7, 256263.

  • 71.

    Kashid, M. N.; Harshe, Y. M.; Agar, D. W. Ind. Eng. Chem. Res. 2007, 46, 84208430.

  • 72.

    Scheiff, F.; Mendorf, M.; Agar, D.; Reis, N.; Mackley, M. Lab Chip 2011, 11, 10221029.

  • 73.

    Gaakeer, W. A.; Croon, M. de; van der Schaaf, J.; Schouten, J. C. Chem. Eng. J. 2012, 207208, 440–444.

  • 74.

    Saxena, A. K.; Nigam, K. D. P. AIChE J. 1984, 30, 363368.

  • 75.

    Hohmann, L.; Gorny, R.; Klaas, O.; Ahlert, J.; Wohlgemuth, K.; Kockmann, N. Chem. Eng. Technol. 2016. DOI: 10.1002/ceat.201600072.

  • 76.

    Kurt, S. K.; Gelhausen, M. G.; Kockmann, N. Chem. Eng. Technol. 2015, 38, 11221130.

  • 77.

    Klutz, S.; Kurt, S. K.; Lobedann, M.; Kockmann, N. Chem. Eng. Res. Des. 2015, 95, 2233.

  • 78.

    Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: New York, 1999.

  • 79.

    Kurt, S. K.; Akhtar, M.; Nigam, K. D. P.; Kockmann, N. Modular Concept of a Smart Scale Helically Coiled Tubular Reactor for Continuous Operation of Multiphase Reaction Systems. In ASME 2016 14th International Conference on Nanochannels, Microchannels and Minichannels; ICNMM2016-8004.

  • 80.

    Vashisth, S.; Kumar, V.; Nigam, K. D. P. Ind. Eng. Chem. Res. 2008, 47, 32913337.

  • 81.

    Kumar, V.; Mridha, M.; Gupta, A. K.; Nigam, K. D. P. Chem. Eng. Sci. 2007, 62, 23862396.

  • 82.

    Singh, J.; Nigam, K. D. P. Chem. Eng. Process. DOI: 10.1016/j. cep.2016.02.001.

  • 83.

    Hohmann, L.; Kurt, S. K.; Pouya Far, N.; Vieth, D.; Kockmann, N. Micro-/Milli-fluidic Heat-Exchanger Characterization by Non-invasive Temperature Sensors. In ASME 2016 14th International Conference on Nanochannels, Microchannels and Minichannels; ICNMM2016-8008.

  • 84.

    Gelhausen, M. G.; Kurt, S. K.; Kockmann, N. Mixing and Heat Transfer in Helical Capillary Flow Reactors With Alternating Bends. In ASME 2014 12th International Conference on Nanochannels, Microchannels and Minichannels, 2014; ICNMM2014-21779.

  • 85.

    Klutz, S.; Lobedann, M.; Bramsiepe, C.; Schembecker, G. Chem. Eng. Process. 2016, 102, 88101.

  • 86.

    Klutz, S.; Magnus, J.; Lobedann, M.; Schwan, P.; Maiser, B.; Niklas, J.; Temming, M.; Schembecker, G. J. Biotechnol. 2015, 213, 120130.

    • Search Google Scholar
    • Export Citation
  • 87.

    Vural Gürsel, I.; Kurt, S. K.; Aalders, J.; Wang, Q.; Noël, T.; Nigam, K. D.; Kockmann, N.; Hessel, V. Chem. Eng. J. 2016, 283, 855868.

    • Search Google Scholar
    • Export Citation
  • 88.

    Kurt, S. K.; Nigam, K. D. P.; Kockmann, N. Two-Phase Flow and Mass Transfer in Helical Capillary Flow Reactors With Alternating Bends. In ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, 2015; InterPACK-ICNMM2015-48416.

  • 89.

    Singh, J.; Kockmann, N.; Nigam, K. D. P. Chem. Eng. Process. 2014, 86, 7889.

  • 90.

    Kacker, R.; Regensburg, S. I.; Kramer, H. J. M. Cooling Crystallization in a Continuous Oscillatory Flow Baffled Crystallizer: Process Optimization for Achieving Narrow Size Distribution. In Proceedings BIWIC 2015, 22nd International Workshop on Industrial Crystallization; Deajeon, KR, 2015.

    • Search Google Scholar
    • Export Citation
  • 91.

    Méndez del Río, J. R.; Rousseau, R. W. Cryst. Growth Des. 2006, 6, 14071414.

  • 92.

    Eder, R. J. P.; Radl, S.; Schmitt, E. K.; Innerhofer, S.; Maier, M.; Gruber-Woelfler, H.; Khinast, J. G. Cryst. Growth Des. 2010, 10, 22472257.

    • Search Google Scholar
    • Export Citation
  • 93.

    Wong, S. Y.; Cui, Y.; Myerson, A. S. Cryst. Growth Des. 2013, 13, 25142521.

  • 94.

    Myerson, A. S.; Wong, S. Y. Devices and methods for crystallization. 14/174, 355, 2014.

  • 95.

    Eder, R. J. P.; Schrank, S.; Besenhard, M. O.; Roblegg, E.; Gruber-Woelfler, H.; Khinast, J. G. Cryst. Growth Des. 2012, 12, 47334738.

    • Search Google Scholar
    • Export Citation
  • 96.

    Jiang, M.; Papageorgiou, C. D.; Waetzig, J.; Hardy, A.; Langston, M.; Braatz, R. D. Cryst. Growth Des. 2015, 15, 24862492.

  • 97.

    Jiang, M.; Zhu, Z.; Jimenez, E.; Papageorgiou, C. D.; Waetzig, J.; Hardy, A.; Langston, M.; Braatz, R. D. Cryst. Growth Des. 2014, 14, 851860.

    • Search Google Scholar
    • Export Citation
  • 98.

    Rossi, D.; Gavriilidis, A.; Kuhn, S.; Candel, M. A.; Jones, A. G.; Price, C.; Mazzei, L. Cryst. Growth Des. 2015, 15, 17841791.

  • 99.

    Roberge, D. M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Chem. Eng. Technol. 2005, 28, 318323.

  • 100.

    Mallubhotla, H.; Belfort, G. J. Membr. Sci. 1997, 125, 7591.

  • 101.

    van de Runstraat, A.; Geerdink, P.; Goetheer, E. L. V. Process and apparatus for carrying out multi-phase reactions. WO 2009/151322 A1, 2008.

  • 102.

    Beckmann, W. Mechanisms of Crystallization. In Crystallization: Basic Concepts and Industrial Applications; Beckmann, W., Ed.; Wiley-VCH: Weinheim, 2013; pp. 733.

    • Search Google Scholar
    • Export Citation
  • 103.

    Eder, R. J. P.; Schmitt, E. K.; Grill, J.; Radl, S.; Gruber-Woelfler, H.; Khinast, J. G. Cryst. Res. Technol. 2011, 46, 227237.