Microwave Heating as a Tool for Sustainable Chemistry, Leadbeater, N. E., Ed.; CRC Press: Boca Raton, FL, 2011
Kappe, C. O.; Stadler, A.; Dallinger, D. Microwaves in Organic and Medicinal Chemistry, 2nd ed.; Wiley-VCH: Weinheim, 2012
Microwaves in Organic Synthesis, de la Hoz, A.; Loupy, A., Eds.; Wiley-VCH: Weinheim, 2012.
For a review describing the translation of microwave batch to continuous-flow protocols (“microwave-to-flow paradigm”), see: Glasnov, T. N.; Kappe, C. O. Chem. Eur. J. 2011, 17, 11956–11968.
Hessel, V.; Kralisch, D.; Krtschil, U. Energy Environ. Sci. 2008, 1, 467–478
Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q. ChemSusChem 2013, 6, 746–789
Razzaq, T.; Kappe, C. O. Chem. Asian J. 2010, 5, 1274–1289.
Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892–4928
Wiles C. ; Watts, P. Green Chem. 2014, 16, 55–62
Ley, S. V.; Fitzpatrick, D. E.; Ingham R. J.; Myers, R. M. Angew. Chem., Int. Ed. 2015, 54, 3449–3464
Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem., Int. Ed. 2015, 54, 6688–6728
Jensen, K. F.; Reizmana, B. J.; Newman, S. G. Lab Chip 2014, 14, 3206–3212
Anderson, N. G. Org. Process Res. Dev. 2012, 16, 852–869
Baxendale, I. R.; Brocken, L.; Mallia, C. J. Green Proc. Synth. 2013, 2, 211–230
Wiles, C.; Watts, P. Green Chem. 2012, 14, 38–54.
Hessel, V.; Kralisch D.; Kockmann, N.; Noël, T.; Wang, Q. ChemSusChem 2013, 6, 746–789
Hessel, V.; Kralisch, D.; Kockmann, N. Novel Process Windows; Wiley-VCH: Weinheim, 2014.
Hessel, V. Chem. Eng. Technol. 2009, 32, 1655–1681.
For a recent example where high-T/p conditions were applied for the generation of a pharmaceutical ingredient on a multikilogram scale, see: May, S. A.; Johnson, M. D.; Braden, T. M.; Calvin, J. R.; Haeberle, B. D.; Jines, A. R.; Miller, R. D.; Plocharczyk, E. F.; Rener, G. A.; Richey, R. N.; Schmid, C. R.; Vaid, R. K.; Yu, H. Org. Process Res. Dev. 2012, 16, 982–1002.
Köll, P.; Metzger, J. Angew. Chem., Int. Ed. Engl. 1978, 17, 754–755.
Metzger, J.; Köll, P. Angew. Chem., Int. Ed. Engl. 1979, 18, 70–71.
Köll, P.; Steinweg, E.; Lackmann, U.; Metzger, J. Tetrahedron Lett. 1979, 3, 223–224.
Köll, P.; Steinweg, E.; Meyer, B.; Metzger, J. Liebigs Ann. Chem. 1982, 6, 1039–1051
Köll, P.; Steinweg, E.; Meyer, B.; Metzger, J. Liebigs Ann. Chem. 1982, 6, 1063–1067.
Metzger, J.; Köll, P. Angew. Chem., Int. Ed. Engl. 1979, 18, 71.
Metzger, J.; Hartmanns, J.; Köll, P. Tetrahedron Lett. 1981, 22, 1891–1894.
Metzger, J. Angew. Chem., Int. Ed. Engl. 1983, 22, 889
Hartmanns, J.; Klenke K.; Metzger, J. O. Chem. Ber. 1986, 119, 488–499
Metzger, J. O. J. Prakt. Chem. (Leipzig) 1990, 332, 767–781.
Metzger, J. O.; Klenke, K. Chem. Ber. 1990, 123, 875–879
Klenke, K.; Metzger, J. O.; Lübben, S. Angew. Chem., Int. Ed. Engl. 1988, 27, 1168–1170.
Metzger, J. O.; Köll, P. Makromol. Chem. 1983, 184, 63–69.
Malwitz, D.; Metzger, J. O. Angew. Chem., Int. Ed. Enql. 1986, 25, 762–763
Malwitz, D.; Metzger, J. O. Chem. Ber. 1986, 119, 3558–3575.
Fekete, M. ; Glasnov, T. N. In Flow Chemistry. Vol. 1; Darvas, F.; Hessel, V.; Dorman, G. Eds.; De Gruyter: Berlin, 2014; Ch. 4, pp. 95–140.