Authors:
Sarah E. Smith Virginia Commonwealth University, Richmond VA, 23284, USA

Search for other papers by Sarah E. Smith in
Current site
Google Scholar
PubMed
Close
,
Zachary J. Huba Virginia Commonwealth University, Richmond VA, 23284, USA

Search for other papers by Zachary J. Huba in
Current site
Google Scholar
PubMed
Close
,
Fahad Almalki University of South Carolina, Columbia, South Carolina, 29225, USA

Search for other papers by Fahad Almalki in
Current site
Google Scholar
PubMed
Close
,
J. R. Regalbuto University of South Carolina, Columbia, South Carolina, 29225, USA

Search for other papers by J. R. Regalbuto in
Current site
Google Scholar
PubMed
Close
,
John Monnier University of South Carolina, Columbia, South Carolina, 29225, USA

Search for other papers by John Monnier in
Current site
Google Scholar
PubMed
Close
, and
Everett E. Carpenter Virginia Commonwealth University, Richmond VA, 23284, USA

Search for other papers by Everett E. Carpenter in
Current site
Google Scholar
PubMed
Close
Restricted access

Magnetic nanomaterials have many applications in the fields of catalysis, medicine, and environmental studies. An emerging synthetic method capable of large-scale production of nanomaterials is a continuous-flow microreactor. However, translating known conventional benchtop reactions to a continuous-flow system can be difficult; reaction parameters such as reaction time and viscosity of the solution are significant limitations in flow-based systems. In this study, nanocrystalline Cu—Ni and Cu—Co core—shell materials were successfully synthesized using a capillary microreactor in a one-step process. Ethanol was used as solvent, allowing for faster reaction times and reduced reaction solution viscosity, compared to similar bench top synthetic protocols. Both nanocomposites were tested for activity in Fischer—Tropsch and showed activity above 220 °C. This study shows that a continuous-flow capillary microreactor has the capabilities to make complex metallic nanomaterials at short reaction times with proper selection of reaction solvent systems.

  • 1.

    Kodama, R. H. J. Magn. Magn. Mater. 1999, 200, 359372.

  • 2.

    Huang, G.; Hu, J.; Zhang, H.; Zhou, Z.; Chi, X.; Gao, J. Nanoscale 2014, 6, 726730.

  • 3.

    Smetana, A. B.; Wang, J. S.; Boeckl, J. J.; Brown, G. J.; Wai, C. M. J. Phys. Chem. C 2008, 112, 22942297.

  • 4.

    Slostowski, C.; Marre, S.; Babot, O.; Toupance, T.; Aymonier, C. Langmuir 2012, 28, 1665616663.

  • 5.

    Choi, H.; Veriansyah, B.; Kim, J.; Kim, J. D.; Kang, J. W. J. Supercrit. Fluids 2010, 52, 285291.

  • 6.

    Pascu, O.; Marre, S.; Aymonier, C.; Roig, A. Nanoscale 2013, 5, 21262132.

  • 7.

    Clifford, D. M.; El-Gendy, A. A.; Lu, A. J.; Pestov, D.; Carpenter, E. E. J. Flow Chem. 2014, 4, 148152.

  • 8.

    Xu, L.; Srinivasakannan, C.; Peng, J.; Zhang, D.; Chen, G. Chemical Engineering and Processing: Process Intensification 2015, 93, 4449.

    • Search Google Scholar
    • Export Citation
  • 9.

    Søndergaard, M.; Bøjesen, E. D.; Christensen, M.; Iversen, B. B. Cryst. Growth Des. 2011, 11, 40274033.

  • 10.

    Testino, A.; Pilger, F.; Lucchini, M.; Quinsaat, J.; Stähli, C.; Bowen, P. Molecules 2015, 20, 10566.

  • 11.

    Gao, W.; Zhao, Y.; Chen, H.; Chen, H.; Li, Y.; He, S.; Zhang, Y.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2015, 17, 15251534.

  • 12.

    Xiao, K.; Bao, Z.; Qi, X.; Wang, X.; Zhong, L.; Fang, K.; Lin, M.; Sun, Y. J. Mol. Catal. A: Chem. 2013, 378, 319325.

  • 13.

    Xi, P.; Cao, Y.; Yang, F.; Ma, C.; Chen, F.; Yu, S.; Wang, S.; Zeng, Z.; Zhang, X. Nanoscale 2013, 5, 61246130.

  • 14.

    Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652676.

  • 15.

    Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 15141528.

  • 16.

    Nafria, R.; Genç, A.; Ibáñez, M.; Arbiol, J.; Ramírez de la Piscina, P.; Homs, N.; Cabot, A. Langmuir 2016, 32, 22672276.

  • 17.

    Bonet, F.; Grugeon, S.; Dupont, L.; Urbina, R. H.; Guéry, C.; Tarascon, J. M. J. Solid State Chem. 2003, 172, 111115.

  • 18.

    Carroll, K. J.; Calvin, S.; Ekiert, T. F.; Unruh, K. M.; Carpenter, E. E. Chem. Mater. 2010, 22, 21752177.

  • 19.

    Huba, Z. J.; Carpenter, E. E. CrystEngComm 2013, 15, 89198923.

  • 20.

    Pearson, W. B. Handbook of Lattice Spacings and Stuctures of Metals; Pergamon Press Ltd.: Oxford, 1967.

  • 21.

    Cha, S. I.; Mo, C. B.; Kim, K. T.; Hong, S. H. J. Mater. Res. 2005, 20, 21482153.

  • 22.

    Ung, D.; Soumare, Y.; Chakroune, N.; Viau, G.; Vaulay, M. J.; Richard, V.; Fiévet, F. Chem. Mater. 2007, 19, 20842094.

  • 23.

    DiPietro, R. S.; Johnson, H. G.; Bennett, S. P.; Nummy, T. J.; Lewis, L. H.; Heiman, D. Appl. Phys. Lett. 2010, 96, 222506.

  • 24.

    Sakharov, A. M.; Mazaletskaya, L. I.; Skibida, I. P. Kinet. Catal. 2001, 42, 662668.

  • 25.

    Li, T.; Wang, H.; Yang, Y.; Xiang, H.; Li, Y. Fuel Process. Technol. 2014, 118, 117124.

  • 26.

    Mohandas, J. C.; Gnanamani, M. K.; Jacobs, G.; Ma, W.; Ji, Y.; Khalid, S.; Davis, B. H. ACS Catal. 2011, 1, 15811588.

  • 27.

    Dry, M. E. Appl. Catal., A 1996, 138, 319344.

  • 28.

    Schulz, H. Appl. Catal., A 1999, 186, 312.

  • 29.

    Schoenitz, M.; Grundemann, L.; Augustin, W.; Scholl, S. Chem. Commun. (Cambridge, U. K.) 2015, 51, 82138228.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Flow Chemistry
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Áramlásos Kémiai Tudományos Társaság
Founder's
Address
H-1031 Budapest, Hungary Záhony utca 7.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-249X (Print)
ISSN 2063-0212 (Online)