Author: L. Baranyi 1
View More View Less
  • 1 Department of Fluid and Heat Engineering, University of Miskolc, H-3515, Miskolc-Egyetemváros, Hungary
Restricted access

Abstract

This numerical study investigates a circular cylinder placed in a uniform stream and moving along a slender figure-8-path, using a 2D computational method based on the finite difference method. The effects of in-line amplitude of oscillation and of frequency ratio are investigated. Computations for varying amplitude values were carried out at Re = 150, 200 and 250 for a clockwise orbit (in the upper loop). Time-mean and rms values of force coefficients yielded smooth curves and tended to increase with amplitude.

The effect of frequency ratio was investigated at Re = 200, 250 and 300 in the lock-in domain for both clockwise (CW) and anticlockwise (ACW) orientation. Results differ substantially depending on the direction of orientation. Mechanical energy transfer was always positive in ACW direction, which may lead to vortex-induced vibration, and always negative for CW orientation. The time-mean of drag was much lower for CW over the whole frequency ratio domain investigated. For the CW orbit vortex switches were found at specific frequency ratios at Re = 250 and 300. Limit cycle curves for the CW orbit before and after a jump were symmetric, mirror images, and quite complex, while vorticity contours were close to symmetry. These results indicate the possibility of symmetry-breaking bifurcation.

  • [1]. C.H.K. Williamson A. Roshko 1988 Vortex formation in the wake of an oscillating cylinder Journal of Fluids and Structures 2 355381.

    • Search Google Scholar
    • Export Citation
  • [2]. X.Y. Lu C. Dalton 1996 Calculation of the timing of vortex formation from an oscillating cylinder Journal of Fluids and Structures 10 527541.

    • Search Google Scholar
    • Export Citation
  • [3]. H.M. Blackburn R.D. Henderson 1999 A study of two-dimensional flow past an oscillating cylinder Journal of Fluid Mechanics 385 255286.

    • Search Google Scholar
    • Export Citation
  • [4]. O. Cetiner D. Rockwell 2001 Streamwise oscillations of a cylinder in a steady current. Part 1. Locked-on states of vortex formation and loading Journal of Fluid Mechanics 427 128.

    • Search Google Scholar
    • Export Citation
  • [5]. Q.M. Al-Mdallal K.P. Lawrence S. Kocabiyik 2007 Forced streamwise oscillations of a circular cylinder: Locked-on modes and resulting fluid forces Journal of Fluids and Structures 23 681701.

    • Search Google Scholar
    • Export Citation
  • [6]. N.W. Mureithi K. Huynh M. Rodriguez A. Pham 2010 A simple low order model of forced Karman wake International Journal of Mechanical Sciences 52 11 15221534.

    • Search Google Scholar
    • Export Citation
  • [7]. Kheirkhah, S. and Yarusevych, S. (2010), Two-degree-of-freedom flow-induced vibrations of a circular cylinder with a high moment of inertia ratio. Proc. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th Int. Conference on Nanochannels, Microchannels, and Minichannels (FEDSM-ICNM2010), Montreal, Québec, Canada, on CD ROM, pp. 110, Paper No. FEDSM-ICNMM2010-30042.

    • Search Google Scholar
    • Export Citation
  • [8]. R.D. Blevins 1990 Flow-induced vibration Krieger Publishing Company Maladar.

  • [9]. E. Didier A.R.J. Borges 2007 Numerical predictions of low Reynolds number flow over an oscillating circular cylinder Journal of Computational and Applied Mechanics 8 1 3955.

    • Search Google Scholar
    • Export Citation
  • [10]. L. Baranyi 2008 Numerical simulation of flow around an orbiting cylinder at different ellipticity values Journal of Fluids and Structures 24 883906.

    • Search Google Scholar
    • Export Citation
  • [11]. P.K. Stansby R.C.T. Rainey 2001 On the orbital response of a rotating cylinder in a current Journal of Fluid Mechanics 439 87108.

    • Search Google Scholar
    • Export Citation
  • [12]. C.H.K. Williamson 2004 Vortex-induced vibrations Annual Review of Fluid Mechanics 36 413455.

  • [13]. D. Jeon M. Gharib 2001 On circular cylinders undergoing two-degree-of-freedom forced motions Journal of Fluids and Structures 15 533541.

    • Search Google Scholar
    • Export Citation
  • [14]. N. Jauvtis C.H.K. Williamson 2004 The effect of two degrees of freedom on vortex-induced vibration and at low mass and damping Journal of Fluid Mechanics 509 2362.

    • Search Google Scholar
    • Export Citation
  • [15]. A. Sanchis G. Sælevik J. Grue 2008 Two-degree-of-freedom vortex-induced vibrations of a spring-mounted rigid cylinder with low mass ratio Journal of Fluids and Structures 24 907919.

    • Search Google Scholar
    • Export Citation
  • [16]. Baranyi, L. (2012), Computation of flow around a circular cylinder undergoing two-degree-of-freedom forced motion at low Reynolds numbers. Proc. 10th International Conference on Flow-Induced Vibration, Meskell & Bennett (eds.), Dublin, pp. 361368.

    • Search Google Scholar
    • Export Citation
  • [17]. T.K. Prasanth S. Mittal 2009 Flow-induced oscillation of two circular cylinders in tandem arrangement at low Re Journal of Fluids and Structures 25 10291048.

    • Search Google Scholar
    • Export Citation
  • [18]. Perdikaris, P.D., Kaiktsis, L. and Triantafyllou, G.S. (2009), Computational study of flow structure and forces on a cylinder vibrating transversely and in-line to a steady stream: Effects of subharmonic forcing. Proc. ASME 2009 Pressure Vessels and Piping Conference, Symposium on Flow-Induced Vibration. Prague, on CD ROM, pp. 15, Paper No. PVP2009-78010.

    • Search Google Scholar
    • Export Citation
  • [19]. Peppa, S., Kaiktsis, L. and Triantafyllou, G.S. (2010), The effect of in-line oscillation on the forces of a cylinder vibrating in a steady flow. Proc. 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise, (within FEDSM2010-ICNMM2010 ASME Conference 2010), Montreal, Québec, Canada, on CD ROM, pp. 1–8, Paper No. FEDSM-ICNMM2010-30054.

    • Search Google Scholar
    • Export Citation
  • [20]. Baranyi, L. (2010), Numerical simulation of the flow around a circular cylinder following a figure-8-like path. Proc. 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise, (within FEDSM2010-ICNMM2010 ASME Conference 2010), Montreal, Québec, Canada, on CD ROM, pp. 1–7, Paper No. FEDSM-ICNMM2010-30888.

    • Search Google Scholar
    • Export Citation
  • [21]. F.H. Harlow J.E. Welch 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface Physics of Fluids 8 21822189.

    • Search Google Scholar
    • Export Citation
  • [22]. L. Baranyi M. Shirakashi 1999 Numerical solution for laminar unsteady flow about fixed and oscillating cylinders Journal of Computer Assisted Mechanics and Engineering Sciences 6 263277.

    • Search Google Scholar
    • Export Citation
  • [23]. L. Baranyi 2003 Computation of unsteady momentum and heat transfer from a fixed circular cylinder in laminar flow Journal of Computational and Applied Mechanics 4 1325.

    • Search Google Scholar
    • Export Citation
  • [24]. J. Chakraborty N. Verma R.P. Chhabra 2004 Wall effects in flow past a circular cylinder in a plane channel: a numerical study Chemical Engineering and Processing 43 15291537.

    • Search Google Scholar
    • Export Citation
  • [25]. A.G. Kravchenko P. Moin K. Shariff 1999 BSpline method and zonal grids for simulations of complex turbulent flows Journal of Computational Physics 151 757789.

    • Search Google Scholar
    • Export Citation
  • [26]. Daróczy, L. and Baranyi, L. (2012), Euler and secondorder Runge-Kutta methods for computation of flow around a cylinder. Proc. 26th MicroCAD International Scientific Conference, Miskolc, Hungary, Section N, pp. 1–6, Paper No. N10.

    • Search Google Scholar
    • Export Citation
  • [27]. L. Baranyi 2005 Lift and drag evaluation in translating and rotating non-inertial systems Journal of Fluids and Structures 20 2534.

    • Search Google Scholar
    • Export Citation
  • [28]. Baranyi, L. (2009), Sudden and gradual alteration of amplitude during the computation for flow around a cylinder oscillating in transverse or in-line direction. Proc. ASME 2009 Pressure Vessels and Piping Conference, Symposium on Flow-Induced Vibration. Prague, on CD ROM, pp.1–10, Paper No. PVP2009-77463.

    • Search Google Scholar
    • Export Citation
  • [29]. Baranyi, L. (2008), Effect of frequency ratio on the force coefficients of a cylinder oscillated in a uniform stream. Proc. 7th JSME-KSME Thermal and Fluids Engineering Conference, Sapporo, Japan, on CD ROM, pp.1–4, Paper No. L132.

    • Search Google Scholar
    • Export Citation
  • [30]. Baranyi, L., Huynh, K. and Mureithi, N.W. (2010), Dynamics of flow behind a cylinder oscillating in-line for low Reynolds numbers. Proc. 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise, (within FEDSM2010-ICNMM2010 ASME Conference 2010), Montreal, Québec, Canada, on CD ROM, pp. 1–10, Paper No. FEDSM-ICNMM2010-31183.

    • Search Google Scholar
    • Export Citation
  • [31]. J.D. Crawford E. Knobloch 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics Annual Review of Fluid Mechanics 23 341387.

    • Search Google Scholar
    • Export Citation
  • [32]. M.R. Gharib 1999 Vortex-induced vibration, absence of lock-in and fluid force deduction GALCIT, California Institute of Technology Pasadena, CA, U.S.A.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)