View More View Less
  • 1 National Research Council of Canada, Construction Portfolio, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
Restricted access

Abstract

The rise in energy prices, the need to conserve energy and the pressure to protect the environment promote the development of innovative eco-friendly thermal insulating foams for building applications. In this quest, a rapid and accurate method to measure the thermal conductivity of new foams is required during the research and product development stage. Temperature-modulated differential scanning calorimetry (MDSC) provides thermal conductivity values from heat capacity measurements on cylindrical samples less than about 20 mg in weight. This method is the basis of the ASTM E1952 standard method “Thermal Conductivity and Thermal Diffusivity by Modulated Differential Scanning Calorimetry”. In this work, the MDSC and the ASTM E1952 test methods are applied to thermal insulating foams used in construction applications. Measurements on polystyrene, polyurethane, and polyisocyanurate insulations demonstrate that MDSC possesses excellent repeatability, but its application through ASTM E 1952 provides inaccurate thermal conductivity values. Two sources of errors were identified, 1) the use of nitrogen as a purge gas, and 2) the use of an equation that inaccurately relates the measured heat capacity to thermal conductivity. Methods around these difficulties exist, but they remain untested with insulating foams.

  • [1]. J. D. Sachs 2008 Coping with a persistent oil crisis Scientific American 299 38.

  • [2]. M. D. Gawryla M. Nezamzadeh D. A. Schiraldi 2008 Foam-like materials produced from abundant natural resources Green Chemistry 10 10781081.

    • Search Google Scholar
    • Export Citation
  • [3]. M. R. Ayers A. J. Hunt 2001 Synthesis and properties of chitosan-silica hybrid aerogels Journal of Non-Crystalline Solids 285 123127.

    • Search Google Scholar
    • Export Citation
  • [4]. Q. Yu P. Wu P. Xu L. Li T. Liu L. Zhao 2008 Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide Green Chemistry 10 10611067.

    • Search Google Scholar
    • Export Citation
  • [5]. J. Cai S. Kimura M. Wada S. Kuga L. Zhang 2008 Cellulose aerogels from aqueous alkali hydroxideurea solution ChemSusChem 1 149154.

    • Search Google Scholar
    • Export Citation
  • [6]. R. P. Tye 2000 Insulation, Thermal Kirk-Othmer Encyclopaedia of Chemical Technology John Wiley & Sons New York.

  • [7]. ASTM C518-04 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. In: ASTM Book of Standards 04.06, ASTM International, West Conshohocken, PA.

  • [8]. J. Chiu P. G. Fair 1979 Determination of thermal conductivity by differential scanning calorimetry Thermochimica Acta 34 267273.

    • Search Google Scholar
    • Export Citation
  • [9]. M. Reading 1993 Modulated differential scanning calorimetry: A new way forward in materials characterization Trends in Polymer Science 1 248253.

    • Search Google Scholar
    • Export Citation
  • [10]. S. M. Marcus R. L. Blaine 1994 Thermal conductivity of polymers, glasses and ceramics by modulated DSC Thermochimica Acta 243 231239.

    • Search Google Scholar
    • Export Citation
  • [11]. R. L. Blaine S. M. Marcus 1998 Derivation of temperature-modulated DSC thermal conductivity equations Journal of Thermal Analysis and Calorimetry 54 467476.

    • Search Google Scholar
    • Export Citation
  • [12]. ASTM E1952-06 Standard Test Method for Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry. In: ASTM Book of Standards 14.02, ASTM International, West Conshohocken, PA, 2006.

  • [13]. Verdonck, E. and Dreezen, G., Thermal Conductivity Measurements of Conductive Epoxy Adhesives by MDSC. In: Thermal Library Application Brief TA312, TA Instruments New Castle, Delaware.

    • Search Google Scholar
    • Export Citation
  • [14]. D. Schrader 1999 Physical constants of poly(styrene) J. Brandup E. H. Immergut E. A. Grulke A. Abe D. R. Bloch Polymer Handbook Wiley New York V91V96.

    • Search Google Scholar
    • Export Citation
  • [15]. W. Wunderlich 1999 Physical constants of poly(methyl methacrylate) J. Brandup E. H. Immergut E. A. Grulke A. Abe D. R. Bloch Polymer Handbook Wiley New York V87V90.

    • Search Google Scholar
    • Export Citation
  • [16]. ASTM C177-04 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. In: ASTM Book of Standards 04.06, ASTM International, West Conshohocken, PA, 2004.

  • [17]. Blaine, R. L. and Cassel, R. B., Precision and Bias of the ASTM Test E1952 for Thermal Conductivity by Modulated Temperature DSC. In: Thermal Library Application Brief TA265, TA Instruments New Castle, Delaware.

    • Search Google Scholar
    • Export Citation
  • [18]. Simon, S. L. and McKenna, G. B. (1998), Measurement of thermal conductivity using temperature-modulated differential scanning calorimetry: Solution to the heat flow problem. In: Annual Technical Conference — ANTEC, Conference Proceedings, pp. 20422046.

    • Search Google Scholar
    • Export Citation
  • [19]. M. Merzlyakov C. Schick 2001 Thermal conductivity from dynamic response of DSC Thermochimica Acta 377 183191.

  • [20]. Marcus, S. M. and Reading, M. (1994), Method and Apparatus for Thermal Conductivity Measurements. United States Patent 5,335, 994.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 0 0 0
Mar 2021 2 0 0
Apr 2021 1 0 0
May 2021 4 0 0
Jun 2021 6 0 0
Jul 2021 17 0 0
Aug 2021 3 0 0