View More View Less
  • 1 National Research Council of Canada, Construction Portfolio, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
Restricted access

Cross Mark

Abstract

The rise in energy prices, the need to conserve energy and the pressure to protect the environment promote the development of innovative eco-friendly thermal insulating foams for building applications. In this quest, a rapid and accurate method to measure the thermal conductivity of new foams is required during the research and product development stage. Temperature-modulated differential scanning calorimetry (MDSC) provides thermal conductivity values from heat capacity measurements on cylindrical samples less than about 20 mg in weight. This method is the basis of the ASTM E1952 standard method “Thermal Conductivity and Thermal Diffusivity by Modulated Differential Scanning Calorimetry”. In this work, the MDSC and the ASTM E1952 test methods are applied to thermal insulating foams used in construction applications. Measurements on polystyrene, polyurethane, and polyisocyanurate insulations demonstrate that MDSC possesses excellent repeatability, but its application through ASTM E 1952 provides inaccurate thermal conductivity values. Two sources of errors were identified, 1) the use of nitrogen as a purge gas, and 2) the use of an equation that inaccurately relates the measured heat capacity to thermal conductivity. Methods around these difficulties exist, but they remain untested with insulating foams.

  • [1]. J. D. Sachs 2008 Coping with a persistent oil crisis Scientific American 299 38.

  • [2]. M. D. Gawryla M. Nezamzadeh D. A. Schiraldi 2008 Foam-like materials produced from abundant natural resources Green Chemistry 10 10781081.

    • Search Google Scholar
    • Export Citation
  • [3]. M. R. Ayers A. J. Hunt 2001 Synthesis and properties of chitosan-silica hybrid aerogels Journal of Non-Crystalline Solids 285 123127.

    • Search Google Scholar
    • Export Citation
  • [4]. Q. Yu P. Wu P. Xu L. Li T. Liu L. Zhao 2008 Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide Green Chemistry 10 10611067.

    • Search Google Scholar
    • Export Citation
  • [5]. J. Cai S. Kimura M. Wada S. Kuga L. Zhang 2008 Cellulose aerogels from aqueous alkali hydroxideurea solution ChemSusChem 1 149154.

    • Search Google Scholar
    • Export Citation
  • [6]. R. P. Tye 2000 Insulation, Thermal Kirk-Othmer Encyclopaedia of Chemical Technology John Wiley & Sons New York.

  • [7]. ASTM C518-04 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. In: ASTM Book of Standards 04.06, ASTM International, West Conshohocken, PA.

  • [8]. J. Chiu P. G. Fair 1979 Determination of thermal conductivity by differential scanning calorimetry Thermochimica Acta 34 267273.

    • Search Google Scholar
    • Export Citation
  • [9]. M. Reading 1993 Modulated differential scanning calorimetry: A new way forward in materials characterization Trends in Polymer Science 1 248253.

    • Search Google Scholar
    • Export Citation
  • [10]. S. M. Marcus R. L. Blaine 1994 Thermal conductivity of polymers, glasses and ceramics by modulated DSC Thermochimica Acta 243 231239.

    • Search Google Scholar
    • Export Citation
  • [11]. R. L. Blaine S. M. Marcus 1998 Derivation of temperature-modulated DSC thermal conductivity equations Journal of Thermal Analysis and Calorimetry 54 467476.

    • Search Google Scholar
    • Export Citation
  • [12]. ASTM E1952-06 Standard Test Method for Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry. In: ASTM Book of Standards 14.02, ASTM International, West Conshohocken, PA, 2006.

  • [13]. Verdonck, E. and Dreezen, G., Thermal Conductivity Measurements of Conductive Epoxy Adhesives by MDSC. In: Thermal Library Application Brief TA312, TA Instruments New Castle, Delaware.

    • Search Google Scholar
    • Export Citation
  • [14]. D. Schrader 1999 Physical constants of poly(styrene) J. Brandup E. H. Immergut E. A. Grulke A. Abe D. R. Bloch Polymer Handbook Wiley New York V91V96.

    • Search Google Scholar
    • Export Citation
  • [15]. W. Wunderlich 1999 Physical constants of poly(methyl methacrylate) J. Brandup E. H. Immergut E. A. Grulke A. Abe D. R. Bloch Polymer Handbook Wiley New York V87V90.

    • Search Google Scholar
    • Export Citation
  • [16]. ASTM C177-04 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. In: ASTM Book of Standards 04.06, ASTM International, West Conshohocken, PA, 2004.

  • [17]. Blaine, R. L. and Cassel, R. B., Precision and Bias of the ASTM Test E1952 for Thermal Conductivity by Modulated Temperature DSC. In: Thermal Library Application Brief TA265, TA Instruments New Castle, Delaware.

    • Search Google Scholar
    • Export Citation
  • [18]. Simon, S. L. and McKenna, G. B. (1998), Measurement of thermal conductivity using temperature-modulated differential scanning calorimetry: Solution to the heat flow problem. In: Annual Technical Conference — ANTEC, Conference Proceedings, pp. 20422046.

    • Search Google Scholar
    • Export Citation
  • [19]. M. Merzlyakov C. Schick 2001 Thermal conductivity from dynamic response of DSC Thermochimica Acta 377 183191.

  • [20]. Marcus, S. M. and Reading, M. (1994), Method and Apparatus for Thermal Conductivity Measurements. United States Patent 5,335, 994.

    • Search Google Scholar
    • Export Citation