Authors: T. Gál 1 and J. Unger 1
View More View Less
  • 1 Department of Climatology and Landscape Ecology, University of Szeged, Szeged, Hungary
Restricted access

Abstract

The first aim of our research is to calculate the solar irradiance on roofs assuming clear sky and real (climatologically typical) conditions, respectively, and compare them in a densely built inner city study area in Szeged (Hungary). The second aim is to analyse the shading effect of the tree-crowns on the possible solar energy gain of building roofs. The calculation of the climatologically potential solar energy gain based on an empirical atmospheric transmittance (calculated from the measured global radiation values). The results show that in the case of clear sky condition the urban vegetation (tree-crowns) causes significant potential solar energy loss on the roofs, but in the real situations this effect is less significant. These obtained results clearly illustrate how useful tool could be the presented calculation method at the economical and technical planning stage of the installation of solar systems on roofs.

  • P. Bencze Gy. Major E. Mészáros 1982 Fizikai meteorológia Akadémiai Kiadó Budapest 300 [Physical meteorology (in Hungarian)].

  • C. H. Duncan R. C. Willson J. M. Kendall R. G. Harrison J. R. Hickey 1982 Latest rocket measurements of solar constant Solar Energy 28 385390.

    • Search Google Scholar
    • Export Citation
  • Gál, T., Unger, J. (2011), Solar access and energy gain of the buildings in a densely built urban area, Proceed. 'Urban Energy’ Conf. 17th ‘Building Services, Mechanical and Building Industry Days’. Debrecen, pp. 3742.

    • Search Google Scholar
    • Export Citation
  • Gál, T., Unger, J. (2012), Surface geometry mapping for SVF calculation in urban areas. Proceed ‘8th International Conference on Urban Climate’. Dublin, Ireland, Paper no. 168.

    • Search Google Scholar
    • Export Citation
  • D. M. Gates 1980 Biophysical ecology Springer-Verlag New York 635.

  • W. A. Hetrick P. M. Rich F. J. Barnes S. B. Weis 1993 GIS-based flux models American Society for Photogrammetry and Remote Sensing Technical Papers 3 132143.

    • Search Google Scholar
    • Export Citation
  • Jansen, T. J. (1985), Solar engineering technology, Partience Hall, New Jersey.

  • F. Kreith J. F. Kreider 1978 Principles of solar engineering Pergamon Press New York 970.

  • L. Kumar A. W. Skidmore E. Knowles 1997 Modelling topographic variation in solar radiation in a GIS environment International Journal of Geographical Systems 11 5 475497.

    • Search Google Scholar
    • Export Citation
  • J. L. Monteith M. H. Unsworth 1990 Principles of environmental physics Edward Arnold London.

  • T. R. Oke 1987 Boundary layer climates Routledge London and New York 405.

  • G. Péczely 1979 Éghajlattan [Climatology (in Hungarian)] Tankönyvkiadó Budapest 336.

  • N. Robinson 1966 Solar radiation Elsevier Amsterdam, London and New York 1013.

  • M. Seprődi-Egeresi A. Zöld 2011 Buildings’ heat output and urban climate Acta Climatologica et Chorologica Universitatis Szegediensis 44–45 103110.

    • Search Google Scholar
    • Export Citation
  • J. Unger 1996 Heat island intensity with different meteorological conditions in a medium-sized town: Szeged, Hungary Theoretical and Applied Climatology 54 147151.

    • Search Google Scholar
    • Export Citation
  • J. Unger 2006 Modelling the annual mean maximum urban heat island with the application of 2 and 3D surface parameters Climate Research 30 215226.

    • Search Google Scholar
    • Export Citation
  • J. Unger T. Gál 2011 Automata állomáspár Szegeden — A városi klímamódosító hatás online megjelenítése Légkör 56 9396 [Automatic station pairs in Szeged — The online visualization of the climate modification effect of the city (in Hungarian)].

    • Search Google Scholar
    • Export Citation
  • Wehrli, C. (1985), Extra-terrestrial solar spectrum. World Radiation Center, Davos Dorf, No. 615.

  • www.esri.com.