This paper presents a novel solution for shape optimization of compressed rubber parts. The procedure is based on the finite element method (FEM). A special purpose FEM code written in FORTRAN has been developed for the analysis of nearly incompressible axi-symmetric rubber parts. Numerical stability of the code and sensitivity analysis of the FEM input parameters are investigated. The aim of the parameter optimization is to reduce the time consuming FEM computations for the optimization process. The objective of the optimization is to find the optimal shape of the investigated rubber parts with a specified load-displacement curve. A regression model is used to determine the connection between the input and output data calculated by the FEM.
[1]. D. S. Malkus 1980 Finite Element with Penalties in Nonlinear Elasticity International Journal for Numerical Methods in Engineering 16 121–136.
[2]. S. R. Swanson L. W. Christensen M. Ensing 1985 Large Deformation Finite Element Calculations for Slightly Compressible Hyperelastic Materials Computers & Structures 21 1–2 81–88.
[3]. O. C. Zienkiewicz S. Qu R. L. Taylor S. Nakazawa 1986 The Patch Test for Mixed Formulations International Journal for Numerical Methods in Engineering 23 1873–1883.
[4]. T. Sussman K. J. Bathe 1987 A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis Computers & Structures 26 1–2 357–409.
[5]. J. C. Simo R. L. Taylor 1991 Quasi-incompressible Finite Elasticity in Principal Streches Computational Methods in Applied Mechanics and Engineering 85 273–310.
[6]. M. S. Gadala 1992 Alternative Methods for the Solution of Hyperelastic Problems with Incompressibility Computers & Structures 42 1 1–10.
[7]. B. A. Szabó I. Babuska B. K. Chayapathy 1989 Stress Computation for Nearly Incompressible Materials by the p-version of the Finite Element Method International Journal for Numerical Methods in Engineering 28 2175–2190.
[8]. Düster, A. (2002), High Order Finite Elements for Three-dimensional, Thin-walled Nonlinear Continua. Shaker Verlag GmbH.
[9]. S. Hartmann P. Neff 2003 Polyconvexity of Generalized Polynomial-type Hyperelastic Strain Energy Functions for Near-incompressibility International Journal of Solids and Structures 40 11 2767–2791.
[10]. Szabó, T. and Mankovits, T. (2004), Finite Element Computations of Hyperelastic Materials. Proceeding of micro-CAD 2004 International Scientific Conference, Miskolc, Hungary, pp. 79–84.
[11]. Bonet, J. and Wood, R. D. (1997), Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.
[12]. J. J. Kim H. Y. Kim 1997 Shape Design of an Engine Mount by a Method of Parameter Optimization Computers & Structures 65 5 725–731.
[13]. T. Ramachandran K. P. Padmanaban P. Nesamani 2012 Modeling and Analysis of IC Engine Rubber Mount using Finite Element Method and RSM Procedia Engineering 38 1683–1692.
[14]. J. S. Lee S. C. Kim 2007 Optimal Design of Engine Mount Rubber Considering Stiffness and Fatigue Strength Journal of Automobile Engineering 221 7 823–835.
[15]. T. Mankovits T. Szabó 2012 Finite Element Analysis of Rubber Bumper Used in Air-springs Procedia Engineering 48 388–395.
[16]. H. Drucker C. J. C. Bruges L. Kaufman A. J. Smola V. Vapnik 1996 Support Vector Regression Machines Advances in Neural Information Processing System 9 155–161.
[17]. Haykin, S. (2008), Neural Networks and Learning Machines. Prentice Hall.
[18]. Bathe, K. J. (1996), Finite Element Procedures. Prentice Hall.
[19]. ISO 7743: 2008 Rubber, vulcanized or thermoplastic — Determination of compression stress-strain properties.