View More View Less
  • 1 Department of Mechanical Engineering, University of Debrecen, Debrecen, Hungary
  • 2 Department of Basic Technical Studies, University of Debrecen, Debrecen, Hungary
  • 3 Department of Engineering Management and Enterprise, University of Debrecen, Debrecen, Hungary
  • 4 Department of Robert Bosch Mechatronics, University of Miskolc, Miskolc, Hungary
  • 5 Department of Mechanics, University of Miskolc, Miskolc, Hungary
Restricted access

Abstract

This paper presents a novel solution for shape optimization of compressed rubber parts. The procedure is based on the finite element method (FEM). A special purpose FEM code written in FORTRAN has been developed for the analysis of nearly incompressible axi-symmetric rubber parts. Numerical stability of the code and sensitivity analysis of the FEM input parameters are investigated. The aim of the parameter optimization is to reduce the time consuming FEM computations for the optimization process. The objective of the optimization is to find the optimal shape of the investigated rubber parts with a specified load-displacement curve. A regression model is used to determine the connection between the input and output data calculated by the FEM.

  • [1]. D. S. Malkus 1980 Finite Element with Penalties in Nonlinear Elasticity International Journal for Numerical Methods in Engineering 16 121136.

    • Search Google Scholar
    • Export Citation
  • [2]. S. R. Swanson L. W. Christensen M. Ensing 1985 Large Deformation Finite Element Calculations for Slightly Compressible Hyperelastic Materials Computers & Structures 21 1–2 8188.

    • Search Google Scholar
    • Export Citation
  • [3]. O. C. Zienkiewicz S. Qu R. L. Taylor S. Nakazawa 1986 The Patch Test for Mixed Formulations International Journal for Numerical Methods in Engineering 23 18731883.

    • Search Google Scholar
    • Export Citation
  • [4]. T. Sussman K. J. Bathe 1987 A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis Computers & Structures 26 1–2 357409.

    • Search Google Scholar
    • Export Citation
  • [5]. J. C. Simo R. L. Taylor 1991 Quasi-incompressible Finite Elasticity in Principal Streches Computational Methods in Applied Mechanics and Engineering 85 273310.

    • Search Google Scholar
    • Export Citation
  • [6]. M. S. Gadala 1992 Alternative Methods for the Solution of Hyperelastic Problems with Incompressibility Computers & Structures 42 1 110.

    • Search Google Scholar
    • Export Citation
  • [7]. B. A. Szabó I. Babuska B. K. Chayapathy 1989 Stress Computation for Nearly Incompressible Materials by the p-version of the Finite Element Method International Journal for Numerical Methods in Engineering 28 21752190.

    • Search Google Scholar
    • Export Citation
  • [8]. Düster, A. (2002), High Order Finite Elements for Three-dimensional, Thin-walled Nonlinear Continua. Shaker Verlag GmbH.

  • [9]. S. Hartmann P. Neff 2003 Polyconvexity of Generalized Polynomial-type Hyperelastic Strain Energy Functions for Near-incompressibility International Journal of Solids and Structures 40 11 27672791.

    • Search Google Scholar
    • Export Citation
  • [10]. Szabó, T. and Mankovits, T. (2004), Finite Element Computations of Hyperelastic Materials. Proceeding of micro-CAD 2004 International Scientific Conference, Miskolc, Hungary, pp. 7984.

    • Search Google Scholar
    • Export Citation
  • [11]. Bonet, J. and Wood, R. D. (1997), Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.

  • [12]. J. J. Kim H. Y. Kim 1997 Shape Design of an Engine Mount by a Method of Parameter Optimization Computers & Structures 65 5 725731.

    • Search Google Scholar
    • Export Citation
  • [13]. T. Ramachandran K. P. Padmanaban P. Nesamani 2012 Modeling and Analysis of IC Engine Rubber Mount using Finite Element Method and RSM Procedia Engineering 38 16831692.

    • Search Google Scholar
    • Export Citation
  • [14]. J. S. Lee S. C. Kim 2007 Optimal Design of Engine Mount Rubber Considering Stiffness and Fatigue Strength Journal of Automobile Engineering 221 7 823835.

    • Search Google Scholar
    • Export Citation
  • [15]. T. Mankovits T. Szabó 2012 Finite Element Analysis of Rubber Bumper Used in Air-springs Procedia Engineering 48 388395.

  • [16]. H. Drucker C. J. C. Bruges L. Kaufman A. J. Smola V. Vapnik 1996 Support Vector Regression Machines Advances in Neural Information Processing System 9 155161.

    • Search Google Scholar
    • Export Citation
  • [17]. Haykin, S. (2008), Neural Networks and Learning Machines. Prentice Hall.

  • [18]. Bathe, K. J. (1996), Finite Element Procedures. Prentice Hall.

  • [19]. ISO 7743: 2008 Rubber, vulcanized or thermoplastic — Determination of compression stress-strain properties.