View More View Less
  • 1 University of Debrecen Department of Mechanical Engineering Debrecen Hungary
  • 2 University of Debrecen Department of Engineering Management and Enterprise Debrecen Hungary
  • 3 Széchenyi István University Department of Material Sciences and Technology Győr Hungary
  • 4 University of Debrecen Orthopedic Clinic Debrecen Hungary
  • 5 University of Debrecen Department of Basic Technical Studies Debrecen Hungary
Restricted access

The development of an efficient procedure for 3d modeling and finite element simulation of metal foams is one of the greatest challenges for engineer researchers nowadays. Creating 3d CAD model is alone a demanding engineering task due to its extremely complex geometry, and the proper finite element analysis process is still in the center of the research. The increasingly widespread application of the metal foams, e.g. in vehicle and medical industry, requires this knowledge in the design phase. A closed-cell metal foam is studied using different analyzing methods where the aim is to collect information about the composition and geometry (structure) that is satisfactory for the later research. Using statistical methods microscopic, X-ray and surface analyzing studies on the specimens produced according to the concerning standard are evaluated. The main goal of this part of the project is to obtain structural information and to determine the homogeneity or the in-homogeneity property of the metal foam specimens taken from different locations.

  • Ashby M. F., Evan A. G., Fleck N. A., Gibson L. J., Hutchinson J. W., Wadley H. N. G. (2000), Metal Foams: A Design Guide. Butterworth-Heinemann.

    Wadley H. N. G. , '', in Metal Foams: A Design Guide , (2000 ) -.

  • Czekanski A., Attia M. S., Meguid S. A., Elbestawi M. A. (2005), On the use of a new cell to model geometric asymmetry of metallic foams. Finite Elements in Analysis and Design, 41(13), 1327–1340.

    Elbestawi M. A. , 'On the use of a new cell to model geometric asymmetry of metallic foams ' (2005 ) 41 Finite Elements in Analysis and Design : 1327 -1340.

    • Search Google Scholar
  • Banhart J. (2001), Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632.

    Banhart J. , 'Manufacture, characterization and application of cellular metals and metal foams ' (2001 ) 46 Progress in Materials Science : 559 -632.

    • Search Google Scholar
  • Vendra L. J., Rabiei A. (2007), Evaluation of modulus of elasticity of composite metal foams by experimental and numerical techniques. Materials Science and Engineering: A, 527(7–8), 1784–1790.

    Rabiei A. , 'Evaluation of modulus of elasticity of composite metal foams by experimental and numerical techniques ' (2007 ) 527 Materials Science and Engineering: A : 1784 -1790.

    • Search Google Scholar
  • Tuncer N., Arslan G. (2009), Designing compressive properties of titanium foams. Journal of Materials Science, 44(6), 1477–1484.

    Arslan G. , 'Designing compressive properties of titanium foams ' (2009 ) 44 Journal of Materials Science : 1477 -1484.

    • Search Google Scholar
  • Kádár Cs., Chmelík F., Rajkovits Zs., Lendvai J. (2004), acoustic emission measurements on metal foams. Journal of Alloys and Compounds, 378(1–2), 145–150.

    Lendvai J. , 'acoustic emission measurements on metal foams ' (2004 ) 378 Journal of Alloys and Compounds : 145 -150.

    • Search Google Scholar
  • Djebbar N., Serier B., Bouiadjra B. B., Benbarek S., Drai A. (2010), Analysis of the effect of load direction on the stress distribution in dental implant. Materials&Design, 31(4), 2097–2101.

    Drai A. , 'Analysis of the effect of load direction on the stress distribution in dental implant ' (2010 ) 31 Materials&Design : 2097 -2101.

    • Search Google Scholar
  • Kashef S., Asgari A., Hilditch T. B., Yan W., Goel V. K., Hodgson P. D. (2010), Fracture toughness of titanium foams for medical applications. Materials Science and Engineering: A, 527(29–30), 7689–7693.

    Hodgson P. D. , 'Fracture toughness of titanium foams for medical applications ' (2010 ) 527 Materials Science and Engineering: A : 7689 -7693.

    • Search Google Scholar
  • Mankovits T., Tóth L., Manó S., Csernátony Z. (2013), Mechanical properties of titanium foams, a review. Proceedings of the 1st International Scientific Conference on Advances in Mechanical Engineering, 10–11 October, Debrecen, Hungary.

    Csernátony Z. , '', in Mechanical properties of titanium foams, a review , (2013 ) -.

  • Saadatfar M., Mukherjee M., Madadi M., Schröder-Turk G. E., Garcia-Moreno F., Schaller F. M., Hutzler S., Sheppard A. P., Banhart J., Ramamurty U. (2012), Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compresion. Acta Materiala, 60(8), 3604–3615.

    Ramamurty U. , 'Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compresion ' (2012 ) 60 Acta Materiala : 3604 -3615.

    • Search Google Scholar
  • Hodge A. M., Dunand D. C. (2003), Measurement and modeling of creep on open-cell NiAl foams. Metallurgical and Materials Transactions A, 34(10), 2353–2363.

    Dunand D. C. , 'Measurement and modeling of creep on open-cell NiAl foams ' (2003 ) 34 Metallurgical and Materials Transactions A : 2353 -2363.

    • Search Google Scholar
  • Hasan, A. (2010), An improved model for FE modeling and simulation of closed cell Al-alloy foams. Advances in Materials Science and Engineering, Article ID 567390, pp. 12, doi: 10.1155/2010/567390

    Hasan A. , '', in Advances in Materials Science and Engineering , (2010 ) -.

  • Kou D. P., Li J. R., Yu J. L., Cheng H. F. (2008), Mechanical behavior of open-cell metallic foams with dual-size cellular structure. Scripta Materialia, 59(5), 483–486.

    Cheng H. F. , 'Mechanical behavior of open-cell metallic foams with dual-size cellular structure ' (2008 ) 59 Scripta Materialia : 483 -486.

    • Search Google Scholar
  • Filice L., Gagliardi F., Umbrello D. (2009), Simulation of aluminium foam behavior in compression tests. The Arabian Journal for Science and Engineering, 34(1), 129–137.

    Umbrello D. , 'Simulation of aluminium foam behavior in compression tests ' (2009 ) 34 The Arabian Journal for Science and Engineering : 129 -137.

    • Search Google Scholar
  • Miedzinska D., Niezgoda T. (2011), Initial results of the finite element analyses of the closed cell aluminium foam microstructure under the blast load. CMM-2011 Computer Methods in Mechanics, 9–12 May, Warsaw, Poland.

    Niezgoda T. , '', in CMM-2011 Computer Methods in Mechanics , (2011 ) -.

  • Adziman M. F., Desphande S., Omiya M., Inoue H., Kishimoto K. (2007), Compressive deformation in aluminium foam investigated using a 2D object oriented finite element modeling approach. Key Engineering Materials, 353–358, 651–654.

    Kishimoto K. , '', in Key Engineering Materials , (2007 ) -.

  • Jirousek O., Doktor T., Kytyr D., Zlámai P., Fíla T., Koudelka P., Jandejsek I., Vavrik D. (2013), X-ray and finite element analysis of deformation response of closed-cell metal foam subjected to compressive loading. Journal of Instrumentation, 8, C02012, doi: 10.1088/1748-0221/8/02/C02012

    Vavrik D. , 'X-ray and finite element analysis of deformation response of closed-cell metal foam subjected to compressive loading ' (2013 ) 8 Journal of Instrumentation : C02012 -.

    • Search Google Scholar
  • ISO 13314:2011 Mechanical Testing of Metals — Ductility Testing — Compression test for Porous and Cellular Metals.

  • Curle U. A., Ivanchev L. (2010), Wear of semi-solid rheocast SiCp/Al metal matrix composites. Transactions of Nonferrous Metals Society of Chine, 20, 852–856.

    Ivanchev L. , 'Wear of semi-solid rheocast SiCp/Al metal matrix composites ' (2010 ) 20 Transactions of Nonferrous Metals Society of Chine : 852 -856.

    • Search Google Scholar
  • Underwood E. E. (1970), Quantitative Stereology. Addison-Wesley Publishing Company.

    Underwood E. E. , '', in Quantitative Stereology , (1970 ) -.

  • Saltykov S. A. (1974), Stereometrische Metallographie. VEB Verlag, Leipzig.

    Saltykov S. A. , '', in Stereometrische Metallographie , (1974 ) -.

  • Hilliard J. E. (1968), Measurement of Volume in Volume. Quantitative Microscopy, McGraw-Hill, New York.

    Hilliard J. E. , '', in Measurement of Volume in Volume. Quantitative Microscopy , (1968 ) -.