View More View Less
  • 1 Faculty of Sciences Department of Physics Tetouan Maroc
Restricted access

Composites made from E-glass/epoxy or aramid/epoxy are frequently used in aircraft and aerospace industries. These materials are prone to suffer from the presence of delamination, which can reduce severely the performance of aircrafts and even threaten their safety. Since electric conductivity of these composites is rather small, they can propagate electromagnetic waves. Detection of delamination damage can then be monitored by using an electromagnetic penetrating radar scanner, which consists of emitting waves having the form of short time pulses that are centered on a given work frequency. While propagating, these waves undergo partial reflection when running into an obstacle or a material discontinuity. Habitually, the radar is moved at constant speed along a straight path and the reflected signal is processed as a radargram that gives the reflected energy as function of the two-way time and the antenna position.In this work, modeling of electromagnetic wave propagation in composites made from E-glass/epoxy was performed analytically. The electromagnetic wave reflection from a delamination defect was analyzed as function of key intervening factors which include the defect extent and depth, as well as the work frequency. Various simulations were performed and the obtained results have enabled to correlate the reflection pattern image features to the actual delamination defect characteristics which can provide quantification of delamination.

  • Dell’Acqua A., Sarti A., Tubaro S., Zanzi L. (2004), Detection of linear objects in GPR data. Signal Process, 84, 785–799.

    Zanzi L. , 'Detection of linear objects in GPR data ' (2004 ) 84 Signal Process : 785 -799.

  • Hugenschmidt J., Kalogeropoulos A., Soldovieri F., Prisco G. (2010), Processing strategies for high-resolution GPR concrete inspections. NDT & E International, 43, 334–342.

    Prisco G. , 'Processing strategies for high-resolution GPR concrete inspections ' (2010 ) 43 NDT & E International : 334 -342.

    • Search Google Scholar
  • Bruschini C., Gros B., Guerne F., Pièce P. Y., Carmona O. (1998), Ground penetrating radar and imaging metal detector for antipersonnel mine detection. Journal of Applied Geophysics, 40, 59–71.

    Carmona O. , 'Ground penetrating radar and imaging metal detector for antipersonnel mine detection ' (1998 ) 40 Journal of Applied Geophysics : 59 -71.

    • Search Google Scholar
  • Illingworth J., Kittler J. (1988), A survey of the Hough transform. Computer Vision, Graphics, and Image Processing, 44, 87–116.

    Kittler J. , 'A survey of the Hough transform ' (1988 ) 44 Computer Vision, Graphics, and Image Processing : 87 -116.

    • Search Google Scholar
  • Shaw M. R., Millard S. G., Molineaux T. C. K, Taylor M. J., Bungey J. H. (2005), Location of steel reinforcement in concrete using ground penetrating radar and neural networks. NDT & E International, 38, 203–212.

    Bungey J. H. , 'Location of steel reinforcement in concrete using ground penetrating radar and neural networks ' (2005 ) 38 NDT & E International : 203 -212.

    • Search Google Scholar
  • Chang C. W., Lin C. H., Lien H. S. (2009), Measurement radius of reinforcing steel bar in concrete using digital image GPR. Constr. Build Mater, 23, 1057–1063.

    Lien H. S. , 'Measurement radius of reinforcing steel bar in concrete using digital image GPR ' (2009 ) 23 Constr. Build Mater : 1057 -1063.

    • Search Google Scholar
  • Utsi V., Utsi E. (2004), Measurements of reinforcement bar depths and diameters in concrete. Proceedings of the 10th International Conference on Ground Penetrating Radar, 21–24 June, 2004, Delft

    Utsi E. , '', in Measurements of reinforcement bar depths and diameters in concrete , (2004 ) -.

  • Lualdi M., Zanzi L., Ciano M. (2006), Experimenting dual-polarized antennas for three-dimensional surveys. In: Proceedings of the 11th International Conference on GPR, June 19–22, 2006, Columbus, Ohio.

    Ciano M. , '', in Experimenting dual-polarized antennas for three-dimensional surveys , (2006 ) -.

  • Barnes C. L., Trottier J. F., Forgeron D. (2008), Improved concrete bridge deck evaluation using GPR by accounting for signal depth-amplitude effects. NDT & E International, 41, 427–433.

    Forgeron D. , 'Improved concrete bridge deck evaluation using GPR by accounting for signal depth-amplitude effects ' (2008 ) 41 NDT & E International : 427 -433.

    • Search Google Scholar
  • Hubbard S. S., Zhang J., Monteiro P. J. M., Peterson J. E., Rubin Y. (2003), Experimental detection of reinforcing bar corrosion using nondestructive geophysical techniques. ACI Mater. J., 100, 501–509.

    Rubin Y. , 'Experimental detection of reinforcing bar corrosion using nondestructive geophysical techniques ' (2003 ) 100 ACI Mater. J. : 501 -509.

    • Search Google Scholar
  • Møller I., Vosgerau H. (2006), Testing ground penetrating radar for resolving facies architecture changes — a radar stratigraphic and sedimentological analysis along a 30 km profile on the Karup Outwash Plain, Denmark. Near Surface Geophysics, 4, 57–68.

    Vosgerau H. , 'Testing ground penetrating radar for resolving facies architecture changes — a radar stratigraphic and sedimentological analysis along a 30 km profile on the Karup Outwash Plain, Denmark ' (2006 ) 4 Near Surface Geophysics : 57 -68.

    • Search Google Scholar
  • Neal A. (2004), Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Science Reviews, 66, 261–330.

    Neal A. , 'Ground-penetrating radar and its use in sedimentology: principles, problems and progress ' (2004 ) 66 Earth-Science Reviews : 261 -330.

    • Search Google Scholar
  • Engheta N., Papas C. H., Elachi C. (1982), Radiation patterns of interfacial dipole antennas. Radio Sci., 17, 1557–1566.

    Elachi C. , 'Radiation patterns of interfacial dipole antennas ' (1982 ) 17 Radio Sci. : 1557 -1566.

    • Search Google Scholar
  • Roberts R. L., Daniels J. J. (1996), Analysis of GPR polarization phenomena. J. Environ. Eng. Geophys., 1, 139–157.

    Daniels J. J. , 'Analysis of GPR polarization phenomena ' (1996 ) 1 J. Environ. Eng. Geophys. : 139 -157.

    • Search Google Scholar
  • Conyers L. B, Goodman D. (1997), Ground-penetrating Radar: An Introduction for Archaeologists, Altamira Press, London.

    Goodman D. , '', in Ground-penetrating Radar: An Introduction for Archaeologists , (1997 ) -.

  • Reynolds J. M. (1997), An Introduction to Applied and Environmental Geophysics, Wiley, Chichester.

    Reynolds J. M. , '', in An Introduction to Applied and Environmental Geophysics , (1997 ) -.

The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 2 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 4 0 0
Nov 2021 5 0 0
Dec 2021 0 0 0