View More View Less
  • 1 Kafrelsheikh University, Kafrelsheikh, Egypt
  • | 2 Tanta University, Tanta, Egypt
Restricted access

This study discusses the economic utilization of proton exchange membrane fuel cell (PEMFC) based on cost of energy (COE) to supply residential electrical and thermal loads. The fuel cell system is sized using simplified mathematical expressions considering the stack degradation and the system salvage value at the end of its life time. The study is based on a 5 kWh/day residential load with a peak load power of 1300 W. Two scenarios for economic survey are studied. The first scenario is to find the commercial price for each FC component considering that the supply fuel is hydrogen. The other scenario is for a complete FC system commercial price considering that the supply fuel is natural gas. The economic analyses are based on the actual sale prices in the market. The COE of the fuel cell system is compared with previous work by the authors for the same residential ratings but supplied from a stand-alone photo voltaic system (SAPV). The analysis results show that the COE relies heavily on the capital cost of the system.

  • [1]

    Mekhilef S. , Saidur R., Safari A. (2012), Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(9), 981989.

    • Search Google Scholar
    • Export Citation
  • [2]

    Wang, Yun , et al. (2011), A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 9811007.

    • Search Google Scholar
    • Export Citation
  • [3]

    Nelson D. B. , Nehrir M. H., Wang C. (2006), Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems. Renewable Energy, 31(10), 16411656.

    • Search Google Scholar
    • Export Citation
  • [4]

    Kuhn R. et al. (2012), Dynamic fuel cell gas humidification system. International Journal of Hydrogen Energy, 37(9), 77027709.

  • [5]

    Harikishan Reddy E. , Jayanti S. (2012), Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell. Applied Thermal Engineering, 48, 465475.

    • Search Google Scholar
    • Export Citation
  • [6]

    Zhang Guangsheng , Kandlikar S. G. (2012), A critical review of cooling techniques in proton exchange membrane fuel cell stacks. International Journal of Hydrogen Energy, 37(3), 24122429.

    • Search Google Scholar
    • Export Citation
  • [7]

    Colozza A. J. , Burke K. A., NASA Glenn Research Center (2011), Evaluation of a passive heat exchanger based cooling system for fuel cell applications. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center.

    • Search Google Scholar
    • Export Citation
  • [8]

    Teymouri H. F. , Sattari S. (2011), Technical and economic feasibility study of using Micro CHP in the different climate zones of Iran. Energy, 36(8), 47904798.

    • Search Google Scholar
    • Export Citation
  • [9]

    Yu, Yi et al. (2011), Comparison of degradation behaviors for open-ended and closed proton exchange membrane fuel cells during startup and shutdown cycles. Journal of Power Sources, 196(11), 50775083.

    • Search Google Scholar
    • Export Citation
  • [10]

    Yu, Yi et al. (2012), A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: causes, consequences, and mitigation strategies. Journal of Power Sources, 205, 1023.

    • Search Google Scholar
    • Export Citation
  • [11]

    Zhou Keliang , Ferreira J. A., De Haan S. W. H. (2008), Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems. International Journal of Hydrogen Energy, 33(2), 477489.

    • Search Google Scholar
    • Export Citation
  • [12]

    Hung Ai-Jen et al. (2008), Cost analysis of proton exchange membrane fuel cell systems. AIChE Journal, 54(7) 17981810.

  • [13]

    Fuel Cell Handbook (2004), 7th ed. EG&G Technical Services, Inc., USDOE.

  • [14]

    Graetz J. (2009), New approaches to hydrogen storage. Chemical Society Reviews, 38(1), 7382.

  • [15]

    Verstraete D. et al. (2010), Hydrogen fuel tanks for subsonic transport aircraft. International Journal of Hydrogen Energy, 35(20) 1108511098.

    • Search Google Scholar
    • Export Citation
  • [16]

    Wan Z. M. et al. (2012), Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack. Applied Thermal Engineering, 42, 173178.

    • Search Google Scholar
    • Export Citation
  • [17]

    Magistri L. , Traverso A., Massardo A. F., Shah R. K. (2006), Heat exchangers for fuel cell and hybrid system applications. Journal of Fuel Cell Science and Technology, 3(2), 111118.

    • Search Google Scholar
    • Export Citation
  • [18]

    Azmy A. M. (2005), Simulation and management of distributed generating units using intelligent techniques. PhD Thesis, Faculty of Engineering, University of Duisburg-Essen, Germany.

    • Search Google Scholar
    • Export Citation
  • [19]

    Carlson E. J. , Kopf P., Sinha J., Sriramulu S., Yang, Y. (2005), Cost Analysis of PEM Fuel Cell for Transportation Systems, National Renewable Energy Laboratory NREL, Report No. NREL/SR-560-39104.

    • Search Google Scholar
    • Export Citation
  • [20]

    Spendelow J. , Marcinkoski J. (2012), Fuel cell system cost– 2012. US Department of Energy Hydrogen and Fuel Cells Program, Report 12020.

    • Search Google Scholar
    • Export Citation
  • [21]

    Bartels J. R. , Pate M. B., Olson N. K. (2010), An economic survey of hydrogen production from conventional and alternative energy sources. International Journal of Hydrogen Energy, 35(16), 83718384.

    • Search Google Scholar
    • Export Citation
  • [22]

    Oh Si-Doek et al. (2012), Optimal operation of a 1-kW PEMFC-based CHP system for residential applications. Applied Energy, 95, 93101.

    • Search Google Scholar
    • Export Citation
  • [23]

    Matsuura T et al. (2013), Degradation phenomena in PEM fuel cell with dead-ended anode, International Journal of Hydrogen Energy.

  • [24]

    Hawkes A. D. , Brett D. J. L. Brandon N. P. (2009), Fuel cell micro-CHP techno-economics: Part 2 – Model application to consider the economic and environmental impact of stack degradation. International Journal of Hydrogen Energy, 34(23), 95589569.

    • Search Google Scholar
    • Export Citation
  • [25]

    http://www.horizonfuelcell.com, accessed on 8/9/2014.

  • [26]

    One of the fuel cell R&D firms in the US: http://www.fuelcellsetc. com/store/, accessed on 11/9/2014.

  • [27]

    Energy Information Administration. U.S. natural gas prices, http://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm

  • [28]

    Zoulias E. I. , Lymberopoulos N. (2007), Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems. Renewable Energy, 32(4), 680696.

    • Search Google Scholar
    • Export Citation
  • [29]

    Makhmalbaf A. et al. (2014), Lesson Learned from Technical and Economic Performance Assessment and Benefit Evaluation of CHP-FCS.

  • [30]

    http://www.nuvant.com, accessed on 11/9/2014.

  • [32]

    http://enefield.eu/, accessed on 9/9/2014.

  • [34]

    Adams A. (2011), Cost analysis comparison of bloom energy fuel cells with solar energy technology and traditional electric companies. PhD Thesis, San Jose State University.

    • Search Google Scholar
    • Export Citation
  • [35]

    Sherif M. , Ahmed M., Rashad E. (2014), Sizing and Economics Analysis of Standalone PV System for Residential Utilization, MEPCON’14, Cairo, 1315 December, 2014.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 4 1 2
May 2021 5 0 0
Jun 2021 9 0 0
Jul 2021 16 0 0
Aug 2021 1 0 0
Sep 2021 13 0 0
Oct 2021 0 0 0