This article has been withdrawn - upon request by authors - by Akadémiai Kiadó due to suspected plagiarism.
Arnfield A. (2003), Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 1–26.
Chen et al. (2011), The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273–288.
Bottyán Z. , Unger J. (2003), A multiple linear statistical model for estimating the mean maximum urban heat island. Theor. Appl. Climatol., 75, 233–243.
Bottyán Z. , Kircsi A., Szegedi S., Unger J. (2005), The relationship between built-up areas and the spatial development of the mean maximum urban heat island in Debrecen, Hungary. Int. J. Climatol., 25, 405–418.
Eliasson I. (1996), Urban nocturnal temperatures, street geometry and land use. Atmos Environ., 30, 379–392.
Ezekiel M. , Fox K. A. (1959), Methods of correlation and regression analysis: Linear and curvilinear, Oxford, England: John Wiley, 548.
Giannaros T. M. , Melas D., Daglis I. A., Keramitsoglou I., Kourtidis K. (2013), Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmospheric Environment, 73, 103–111.
Landsberg H. E. (1981), The Urban Climate, Academic Press, New York-London-Toronto-Sydney, San Francisco, pp. 83–126.
Lakatos M. , Szentimrey T., Bihari Z., Szalai S., (2013), Creation of a homogenized climate database for the Carpathian region by applying the MASH procedure and the preliminary analysis of the data. Időjárás, 117(1), 143–158.
Lee S.-H. , Baik J.-J. (2010), Statistical and dynamical characteristics of the urban heat island intensity in Seoul. Theor. Appl. Climatol., 100, 227–237.
Loughner C. P. , Allen D. J., Zhang D-L., Pickering K. E., Dickerson R. R., Landry L. (2012), Roles of urban tree canopy and buildings in Urban Heat Island effects: Parameterization and preliminary results. Journal of Applied Meteorology and Climatology, 51, 1775–1973.
Oke T. R. (1987), Boundary Layer Climates. Routledge, London-New York, 405 p.
Oke T. R. (1973), City size and the urban heat island. Atmos. Environ., 7, 769–779.
Orlanski I. (1975), A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530.
Sneyers S. (1990), On the statistical analysis of series of observations; Technical note no. 5 143, WMO No 725 415, Secretariat of the World Meteorological Organization, Geneva. 192.
Szegedi S. , Kircsi A. (2003), The development of the Urban Heat Island under various weather conditions in Debrecen, Hungary. In: Klysik K., Oke T. R., Fortuniak K., Grimmond C. S. B., Wibig J. (eds.) Proceed. ICUC-5, Lodz, Poland, Vol. 1, 139–142.
Szegedi S. , Tóth T., Kapocska L., Gyarmati R. (2013), Examinations on the factors of Urban Heat Island development in small and medium-sized towns in Hungary. Carpathian Journal of Earth and Environmental Sciences, 8(2), 209–214.
Unger J. (1996), Heat island intensity with different meteorological conditions in a medium-sized town: Szeged, Hungary. Theor. Appl. Climatol., 54, 147–151.
Unger J. , Bottyán Z., Sümeghy Z., Gulyás A. (2000), Urban Heat Island development affected by urban surface factors. Időjárás, 104, 253–268.
Unger J. , Bottyán Z., Sümeghy Z., Gulyás A. (2004), Connection between Urban Heat Island and surface parameters: measurements and modeling. Időjárás, 108, 173–194.
Wayne T. W. (2000), Change-point analysis: a powerful new tool for detecting changes. http://www.variation.com/cpa/tech/changepoint.html. Submitted to Quality Engineering
Ward J. E. , Wendell R. E. (1980), A new norm for measuring distance which yields linear location models. Operations Research, 28, 836–844.
Yule G. U. , Kendall M. G. (1950), An Introduction to the Theory of Statistics. 14th ed., revised and enlarged, Charles Griffin & Company, London, 475–480.