View More View Less
  • 1 Carleton University, Ottawa, ON, Canada
  • | 2 Construction Portfolio, Ottawa, ON, Canada
  • | 3 Canada Wood Group and Council of Forest Industries, Canada
  • | 4 Council of Forest Industries, Canada
Restricted access

This paper discusses the results of a research project which aimed at determining the hygrothermal (i.e. thermal and moisture) performance of the Canadian wood-frame building envelope construction in the city of Shanghai in China. The performance assessments of the wood-frame walls were conducted using the two-dimensional hygrothermal simulation tool called hygIRC-2D. In this study an in-fill type wall was considered and hygrothermal simulations were carried out for the weather conditions of Shanghai. Investigations were conducted to determine the influence of the vapour barrier, exterior stucco cladding material and different types of sheathing boards on the moisture performance of in-fill walls. Additional simulations were carried out to determine the influence of air leakage on the moisture performance of in-fill walls. The outputs from the simulations were analysed with the help of a hygrothermal response indicator called RHT index. It was concluded that the design of the in-fill wall including a rain screen but omitting a vapour barrier is expected to lead to the maximum reduction in hygrothermal loading when exposed to the weather conditions of Shanghai, China.

  • [1]

    Mukhopadhyaya P. , Van Reenen D., Assessment of Moisture Performance of Wood Frame Walls in China and Taiwan. National Research Council Canada IRC/NRC, Ottawa, Client Final Report. Report No: B1083.1, pp. 1170, 16 July 2007.

    • Search Google Scholar
    • Export Citation
  • [2]

    Canada Wood. Wood—Concrete Hybrid Construction. International Building Series: NO.9.

  • [3]

    Nofal M. , Kumaran M.K. (1999), Durability assessments of wood-frame construction using the concept of damage- functions. In: Proceedings of the 8th international Conference Durability of Building Materials and Components.

    • Search Google Scholar
    • Export Citation
  • [4]

    Maref W. , Lacasse M.A., Booth D.G., Benchmarking of IRC’s Advanced Hygrothermal Model — hygIRC: Using Mid- and Large-Scale Experiments. National Research Council Canada, IRC-RR-126, December 2002.

    • Search Google Scholar
    • Export Citation
  • [5]

    Kumaran K. , Lackey J., Normadin N., Tarikhu F, Van Reenen D. (2004), A thermal and moisture transport property database for common building and insulating materials. Final Report from ASHRAE Research Project 1018-RP, pp. 1229.

    • Search Google Scholar
    • Export Citation
  • [6]

    Mukhopadhyaya P. , Kumaran M.K., Prediction of Moisture response of wood frame walls using IRC’s Advanced Hygrothermal Model (hygIRC). Proceedings of 2nd Annual Conf. on Durability and Disaster Mitigation in Wood-Frame Housing, pp. 221226. November, 2000.

    • Search Google Scholar
    • Export Citation
  • [7]

    Khanagry R.E. (2008), Assessment of moisture performance of Canadian wood-frame envelopes in Taiwan. M. Eng Project Report, Dept. Civil and Env. Eng., Carleton University, Ottawa, Canada.

    • Search Google Scholar
    • Export Citation
  • [8]

    Maref W. , Cornick S., Abdulghani K., Van Reenen D., An advanced hygrothermal design tool 1-D hygIRC. Proceedings of Canadian conference on building energy simulation (eSim) (NRCC-46902) Vancouver, B.C., pp. 190195, June 10–11, 2004.

    • Search Google Scholar
    • Export Citation
  • [9]

    Mukhopadhyaya P. , MEWS project produces long-term moisture response indicator. Building envelope and structure —Construction Innovation, 8(1), NRC-CNRC, March 2003.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Publication
Programme
2021 Volume 12
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 0 0 0
Jun 2021 4 0 0
Jul 2021 0 0 0
Aug 2021 4 0 0
Sep 2021 2 0 0
Oct 2021 0 0 0