Authors: Z. Mechbal1 and A. Khamlichi1
View More View Less
  • 1 Abdelmalek Essaadi University, Tetouan 93002, Morocco
Restricted access

Ground Penetrating Radar (GPR) is largely used nowadays in civil engineering applications as an effective technique of structural monitoring. This paper describes a method using radargram acquired by the GPR for estimating the radius of a steel rebar buried in a concrete massif, which is assumed to be homogeneous and isotopic. Considering the forward problem under B-scan procedure, a closed form mathematical formula was derived for the hyperbola trace appearing as the diffraction pattern provided by a circular steel bar. This equation relates the observed hyperbola parameters in the obtained radargram to the characteristics of the object and those of the host medium where the object is buried. The inverse problem was solved in two steps. Using the extracted raw data in terms of the hyperbola characteristics and Hough transform, the coordinates of the peak hyperbola are identified. Then the wave speed, the rebar radius as well as the coordinates of the rebar centre are estimated by a curve fitting procedure which is based on the selection of an arbitrary set of points on the considered hyperbola. The effect of noise resulting from variations affecting the electromagnetic wave speed was assessed. The noise was assumed to be a random variable and to act additively on the actual ordinates of the hyperbola. The obtained results have shown that the estimation of the rebar radius is very sensitive to the considered level of noise. Noise impedes the retrieval of a bar radius if its magnitude exceeds 5%.

  • [1]

    Ristic A.V. , Petrovacki D., Govedarica M. (2009), A new method to simultaneously estimate the radius of a cylindrical object and the wave propagation velocity from GPR data. Computers & Geosciences, 35, 16201630.

    • Search Google Scholar
    • Export Citation
  • [2]

    Shihab S. , Al-Nuaimy W., Eriksen A. (2004), Radius estimation for subsurface cylindrical objects detected by ground penetrating radar. In: Proceedings 10th International Conference on Ground Penetrating Radar, Delft, The Netherlands, pp. 319322.

    • Search Google Scholar
    • Export Citation
  • [3]

    Shihab S. , Al-Nuaimy W. (2005), Radius estimation for cylindrical objects detected by ground penetrating radar. Subsurface Sensing Technologies and Applications, 6, 151166.

    • Search Google Scholar
    • Export Citation
  • [4]

    O’Leary P. , Zsombor-Murray P. (2004), Direct and specific least-square fitting of hyperbolae and ellipses. Journal of Electronic Imaging, 13, 492503.

    • Search Google Scholar
    • Export Citation
  • [5]

    Dolgiy A. , Dolgiy A., Zolotarev V. (2006), Optimal radius estimation for subsurface pipes detected by ground penetrating radar. In: Proceedings 11th International Conference on Ground Penetrating Radar, Columbus, Ohio, USA.

    • Search Google Scholar
    • Export Citation
  • [6]

    Windsor C.G. , Capineri L. (1998), Automated Object Positioning from Ground Penetrating Radar Images. INSIGHT, Journal of the British Institute of Non Destructive Testing, 7, 482488.

    • Search Google Scholar
    • Export Citation
  • [7]

    Lewis R.M. , Torczon V. (2000), Pattern Search Methods for Linearly Constrained Minimization. SIAM Journal on Optimization, 10(3), 917941.

    • Search Google Scholar
    • Export Citation
  • [8]

    Persico R. (2014), Introduction to Ground Penetrating Radar; Inverse Scattering and Data Processing. John Wiley & Sons, Inc., Hoboken, New Jersey.

    • Search Google Scholar
    • Export Citation
  • [9]

    Radzevicius S.J. , Daniels J.J. (2000), Ground penetrating radar polarization and scattering from cylinders. Journal of Applied Geophysics, 45, 111125

    • Search Google Scholar
    • Export Citation
  • [10]

    Giovanni L. (2012), Ground Penetrating Radar: An Application to Estimate Volumetric Water Content and Reinforced Bar Diameter in Concrete Structures. Journal of Advanced Concrete Technology, 10, 411422.

    • Search Google Scholar
    • Export Citation
  • [11]

    Kein L.A. , Swift C.T. (1977), An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag., AP-25, 104111.

    • Search Google Scholar
    • Export Citation
  • [12]

    Tran A.P. , Bogaert P., Wiaux F., Vanclooster M., Lambot S. (2015), High-resolution space-time quantification of soil moisture along a hillslope using joint analysis of ground penetrating radar and frequency domain reflectometry data. Journal of Hydrology, 523, 252261.

    • Search Google Scholar
    • Export Citation
  • [13]

    Patriarca C. , Tosti F., Velds C., Benedetto A., Lambot S., Slob E. (2013), Frequency dependent electric properties of homogeneous multi-phase lossy media in the ground-penetrating radar frequency range. Journal of Applied Geophysics, 97, 8188.

    • Search Google Scholar
    • Export Citation
  • [14]

    Tran A.P. , Ardekani M.R.M., Lambot, S. (2012), Coupling of dielectric mixing models with full-wave ground-penetrating radar signal inversion for sandy-soil-moisture estimation. Geophysics, 77(3), H33H44.

    • Search Google Scholar
    • Export Citation
  • [15]

    Ardekani M.R. , Neyt X., Nottebaere M., Jacques D., Lambot S. (2014), GPR data inversion for vegetation layer. 15th International Conference on Ground Penetrating Radar (GPR), Brussels, 4, pp. 170175.

    • Search Google Scholar
    • Export Citation
  • [16]

    Sandmeier K.J. (1998), Reflexw version 6.0, Karlsruhe, Germany.

The author instruction is available in PDF.
Please, download the file from HERE.
Submit Your Manuscript
 

Senior editors

Editor-in-Chief: Ákos, Lakatos

Founder, former Editor-in-Chief (2011-2020): Ferenc Kalmár

Founding Editor: György Csomós

Associate Editor: Derek Clements Croome

Associate Editor: Dezső Beke

Editorial Board

  • M. N. Ahmad, Institute of Visual Informatics, Universiti Kebangsaan Malaysia, Malaysia
  • M. Bakirov, Center for Materials and Lifetime Management Ltd., Moscow, Russia
  • N. Balc, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • U. Berardi, Ryerson University, Toronto, Canada
  • I. Bodnár, University of Debrecen, Debrecen, Hungary
  • S. Bodzás, University of Debrecen, Debrecen, Hungary
  • F. Botsali, Selçuk University, Konya, Turkey
  • S. Brunner, Empa - Swiss Federal Laboratories for Materials Science and Technology
  • I. Budai, University of Debrecen, Debrecen, Hungary
  • C. Bungau, University of Oradea, Oradea, Romania
  • M. De Carli, University of Padua, Padua, Italy
  • R. Cerny, Czech Technical University in Prague, Czech Republic
  • Gy. Csomós, University of Debrecen, Debrecen, Hungary
  • T. Csoknyai, Budapest University of Technology and Economics, Budapest, Hungary
  • G. Eugen, University of Oradea, Oradea, Romania
  • J. Finta, University of Pécs, Pécs, Hungary
  • A. Gacsadi, University of Oradea, Oradea, Romania
  • E. A. Grulke, University of Kentucky, Lexington, United States
  • J. Grum, University of Ljubljana, Ljubljana, Slovenia
  • G. Husi, University of Debrecen, Debrecen, Hungary
  • G. A. Husseini, American University of Sharjah, Sharjah, United Arab Emirates
  • N. Ivanov, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
  • A. Járai, Eötvös Loránd University, Budapest, Hungary
  • G. Jóhannesson, The National Energy Authority of Iceland, Reykjavik, Iceland
  • L. Kajtár, Budapest University of Technology and Economics, Budapest, Hungary
  • F. Kalmár, University of Debrecen, Debrecen, Hungary
  • T. Kalmár, University of Debrecen, Debrecen, Hungary
  • M. Kalousek, Brno University of Technology, Brno, Czech Republik
  • J. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • V. Koci, Czech Technical University in Prague, Prague, Czech Republic
  • I. Kocsis, University of Debrecen, Debrecen, Hungary
  • I. Kovács, University of Debrecen, Debrecen, Hungary
  • É. Lovra, Univesity of Debrecen, Debrecen, Hungary
  • T. Mankovits, University of Debrecen, Debrecen, Hungary
  • I. Medved, Slovak Technical University in Bratislava, Bratislava, Slovakia
  • L. Moga, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • M. Molinari, Royal Institute of Technology, Stockholm, Sweden
  • H. Moravcikova, Slovak Academy of Sciences, Bratislava, Slovakia
  • P. Mukhophadyaya, University of Victoria, Victoria, Canada
  • B. Nagy, Budapest University of Technology and Economics, Budapest, Hungary
  • H. S. Najm, Rutgers University, New Brunswick, United States
  • J. Nyers, Subotica Tech - College of Applied Sciences, Subotica, Serbia
  • B. W. Olesen, Technical University of Denmark, Lyngby, Denmark
  • S. Oniga, North University of Baia Mare, Baia Mare, Romania
  • J. N. Pires, Universidade de Coimbra, Coimbra, Portugal
  • L. Pokorádi, Óbuda University, Budapest, Hungary
  • A. Puhl, University of Debrecen, Debrecen, Hungary
  • R. Rabenseifer, Slovak University of Technology in Bratislava, Bratislava, Slovak Republik
  • M. Salah, Hashemite University, Zarqua, Jordan
  • D. Schmidt, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Kassel, Germany
  • L. Szabó, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • Cs. Szász, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
  • J. Száva, Transylvania University of Brasov, Brasov, Romania
  • P. Szemes, University of Debrecen, Debrecen, Hungary
  • E. Szűcs, University of Debrecen, Debrecen, Hungary
  • R. Tarca, University of Oradea, Oradea, Romania
  • Zs. Tiba, University of Debrecen, Debrecen, Hungary
  • L. Tóth, University of Debrecen, Debrecen, Hungary
  • A. Trnik, Constantine the Philosopher University in Nitra, Nitra, Slovakia
  • I. Uzmay, Erciyes University, Kayseri, Turkey
  • T. Vesselényi, University of Oradea, Oradea, Romania
  • N. S. Vyas, Indian Institute of Technology, Kanpur, India
  • D. White, The University of Adelaide, Adelaide, Australia
  • S. Yildirim, Erciyes University, Kayseri, Turkey

International Review of Applied Sciences and Engineering
Address of the institute: Faculty of Engineering, University of Debrecen
H-4028 Debrecen, Ótemető u. 2-4. Hungary
Email: irase@eng.unideb.hu

Indexing and Abstracting Services:

  • DOAJ
  • Google Scholar
  • ProQuest
  • SCOPUS
  • Ulrich's Periodicals Directory

 

2020  
Scimago
H-index
5
Scimago
Journal Rank
0,165
Scimago
Quartile Score
Engineering (miscellaneous) Q3
Environmental Engineering Q4
Information Systems Q4
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q4
Scopus
Cite Score
102/116=0,9
Scopus
Cite Score Rank
General Engineering 205/297 (Q3)
Environmental Engineering 107/146 (Q3)
Information Systems 269/329 (Q4)
Management Science and Operations Research 139/166 (Q4)
Materials Science (miscellaneous) 64/98 (Q3)
Scopus
SNIP
0,26
Scopus
Cites
57
Scopus
Documents
36
Days from submission to acceptance 84
Days from acceptance to publication 348
Acceptance
Rate

23%

 

2019  
Scimago
H-index
4
Scimago
Journal Rank
0,229
Scimago
Quartile Score
Engineering (miscellaneous) Q2
Environmental Engineering Q3
Information Systems Q3
Management Science and Operations Research Q4
Materials Science (miscellaneous) Q3
Scopus
Cite Score
46/81=0,6
Scopus
Cite Score Rank
General Engineering 227/299 (Q4)
Environmental Engineering 107/132 (Q4)
Information Systems 259/300 (Q4)
Management Science and Operations Research 136/161 (Q4)
Materials Science (miscellaneous) 60/86 (Q3)
Scopus
SNIP
0,866
Scopus
Cites
35
Scopus
Documents
47
Acceptance
Rate
21%

 

International Review of Applied Sciences and Engineering
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Limited number of full waiver available. Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access

International Review of Applied Sciences and Engineering
Language English
Size A4
Year of
Foundation
2010
Volumes
per Year
1
Issues
per Year
3
Founder Debreceni Egyetem
Founder's
Address
H-4032 Debrecen, Hungary Egyetem tér 1
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-0810 (Print)
ISSN 2063-4269 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 4 0 0
Sep 2021 0 0 0
Oct 2021 3 0 0
Nov 2021 2 0 0
Dec 2021 239 0 0
Jan 2022 5 0 0
Feb 2022 0 0 0