View More View Less
  • 1 University of Debrecen, Debrecen, Hungary
Restricted access

Non-linear finite element calculations are indispensable when important information of the material response under load of a rubber component is desired. Although the material characterization of a rubber component is a demanding engineering task, the changing contact range between the parts and the incompressibility behaviour of the rubber further increase the complexity of the investigations. In this paper the effects of the choice of the numerical material parameters (e.g. bulk modulus) are examined with regard to numerical stability, mesh density and calculation accuracy. As an example, a rubber spring is chosen where contact problem is also handled.

  • [1]

    Mankovits T. , Szabó T., Kocsis I., Páczelt I. (2014), Optimization of the shape of axi-symmetric rubber bumpers. Strojniskivestnik-Journal of Mechanical Engineering, 60(1), 6171.

    • Search Google Scholar
    • Export Citation
  • [2]

    Mankovits T. , Kocsis I., Portik T., Szabó T., Páczelt I. (2013), Shape design of rubber part using FEM. International Review of Applied Sciences and Engineering, 4(2), 8594.

    • Search Google Scholar
    • Export Citation
  • [3]

    Páczelt I. , Baksa A., Szabó T. (2007), Product design using a contact-optimization technique. Strojniskivestnik-Journal of Mechanical Engineering, 53(7–8), 442461.

    • Search Google Scholar
    • Export Citation
  • [4]

    Kim J. J. , Kim H. Y. (1997), Shape design of an engine mount by a method of parameter optimization. Computers & Structures, 65(5), 725731.

    • Search Google Scholar
    • Export Citation
  • [5]

    Ramachandran T. , Padmanaban K. P., Nesamani P. (2012), Modeling and analysis of IC engine rubber mount using finite element method and RSM. Procedia Engineering, 38, 16831692.

    • Search Google Scholar
    • Export Citation
  • [6]

    Lee J. S. , Kim S. C. (2007), Optimal design of engine mount rubber considering stiffness and fatigue strength. Journal of Automobile Engineering, 221(7), 823835.

    • Search Google Scholar
    • Export Citation
  • [7]

    Mankovits T. , Szabó T. (2012), Finite element analysis of rubber bumper used in air-springs. Procedia Engineering, 48, 388395.

  • [8]

    Vámosi A. , Mankovits T., Huri D., Kocsis I., Szabó T. (2015), Comparison of different data acquisition techniques for shape optimization problems. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9(3), 458461.

    • Search Google Scholar
    • Export Citation
  • [9]

    Mankovits T. , Huri D., Kállai I., Kocsis I., Szabó T. (2014), Material characterization and numerical simulation of a rubber bumper. International Journal of Mechanical, Aero space, Industrial, Mechatronic and Manufacturing Engineering, 8(8), 13671370.

    • Search Google Scholar
    • Export Citation
  • [10]

    Mott P. H. , Dorgan J. R., Roland C. M. (2008), The bulk modulus and Poisson’s ration of incompressible materials. Journal of Sound and Vibration, 312, 572.572.

    • Search Google Scholar
    • Export Citation
  • [11]

    Giannakopoulos A. E. , Panagiotopoulos D. I. (2009), Conical indentation of incompressible rubber-like materials. International Journal of Solids and Structures, 46(6), 14361447.

    • Search Google Scholar
    • Export Citation
  • [12]

    Koblar D. , Skofi c J., Boltezar M. (2014), Evaluation of the Young’s modulus of rubber-like materials bonded to rigid surfaces with respect to Poisson’s ratio. Strojniskivestnik- Journal of Mechanical Engineering, 60(7-8), 506511.

    • Search Google Scholar
    • Export Citation
  • [13]

    Bonet J. , Wood R. D. (1997), Nonlinear continuum mechanics for finite element analysis. Cambridge University Press.