The pattern of receptors sensing pathogens onto host cells is a key factor that can determine the outcome of the infection. This is particularly true when such receptors belong to the family of pattern recognition receptors involved in immunity. Mycobacterium tuberculosis, the etiologic agent of tuberculosis interacts with a wide range of pattern-recognition receptors present on phagocytes and belonging to the Toll-like, Nod-like, scavenger and C-type lectin receptor families. A complex scenario where those receptors can establish cross-talks in recognizing pathogens or microbial determinants including mycobacterial components in different spatial and temporal context starts to emerge as a key event in the outcome of the immune response, and thus, the control of the infection. In this review, we will focus our attention on the family of calcium-dependent carbohydrate receptors, the C-type lectin receptors, that is of growing importance in the context of microbial infections. Members of this family appear to be key innate immune receptors of mycobacteria, capable of cross-talk with other pattern recognition receptors to induce or modulate the inflammatory context upon mycobacterial infection.
1. WHO (2010) Global tuberculosis control report 2010.
2. E.K. Jo 2008 Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs Curr Opin Infect Dis 21 279–286.
3. J.J. Garcia-Vallejo Y. van Kooyk 2009 Endogenous ligands for Ctype lectin receptors: the true regulators of immune homeostasis Immunol Rev 230 22–37.
4. J.L. Casanova L. Abel L. Quintana-Murci 2011 Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics Annu Rev Immunol 29 447–491.
5. N.W. Schroder R.R. Schumann 2005 Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease Lancet Infect Dis 5 156–164.
6. S.E. Turvey T.R. Hawn 2006 Towards subtlety: understanding the role of Toll-like receptor signaling in susceptibility to human infections Clin Immunol 120 1–9.
7. J.J. Yim H.W. Lee H.S. Lee Y.W. Kim S.K. Han Y.S. Shim S.M. Holland 2006 The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans Genes Immun 7 150–155.
8. X. Ma Y. Liu B.B. Gowen E.A. Graviss A.G. Clark J.M. Musser 2007 Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease PLoS One 2 e1318.
9. D.R. Velez C. Wejse M.E. Stryjewski E. Abbate W.F. Hulme J.L. Myers R. Estevan S.G. Patillo R. Olesen A. Tacconelli G. Sirugo J.R. Gilbert C.D. Hamilton W.K. Scott 2009 Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans Hum Genet 127 65–73.
10. S. Davila M.L. Hibberd R. Hari Dass H.E. Wong E. Sahiratmadja C. Bonnard B. Alisjahbana J.S. Szeszko Y. Balabanova F. Drobniewski R. van Crevel E. van de Vosse S. Nejentsev T.H. Ottenhoff M. Seielstad 2008 Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis PLoS Genet 4 e1000218.
11. C.M. Austin X. Ma E.A. Graviss 2008 Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease inAfricanAmericans J Infect Dis 197 1713–1716.
12. A. Fortin L. Abel J.L. Casanova P. Gros 2007 Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis Annu Rev Genomics Hum Genet 8 163–192.
13. C. Holscher N. Reiling U.E. Schaible A. Holscher C. Bathmann D. Korbel I. Lenz T. Sonntag S. Kroger S. Akira H. Mossmann C.J. Kirschning H. Wagner M. Freudenberg S. Ehlers 2008 Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9 Eur J Immunol 38 680–694.
14. D.S. Korbel B.E. Schneider U.E. Schaible 2008 Innate immunity in tuberculosis: myths and truth Microbes Infect 10 995–1004.
15. N. Reiling S. Ehlers C. Holscher 2008 MyDths and un-TOLLed truths: sensor, instructive and effector immunity to tuberculosis Immunol Lett 116 15–23.
16. N. Court V. Vasseur R. Vacher C. Fremond Y. Shebzukhov V.V. Yeremeev I. Maillet S.A. Nedospasov S. Gordon P.G. Fallon H. Suzuki B. Ryffel V.F. Quesniaux 2010 Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection J Immunol 184 7057–7070.
17. A. Bafica C.A. Scanga C.G. Feng C. Leifer A. Cheever A. Sher 2005 TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis J Exp Med 202 1715–1724.
18. A. Blumenthal T. Kobayashi L.M. Pierini N. Banaei J.D. Ernst K. Miyake S. Ehrt 2009 RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins Cell Host Microbe 5 35–46.
19. A. Tanne B. Ma F. Boudou L. Tailleux H. Botella E. Badell F. Levillain M.E. Taylor K. Drickamer J. Nigou K.M. Dobos G. Puzo D. Vestweber M.K. Wild M. Marcinko P. Sobieszczuk L. Stewart D. Lebus B. Gicquel O. Neyrolles 2009 A murine DCSIGN homologue contributes to early host defense against Mycobacterium tuberculosis J Exp Med 206 2205–2220.
20. D.M. Bowdish K. Sakamoto M.J. Kim M. Kroos S. Mukhopadhyay C.A. Leifer K. Tryggvason S. Gordon D.G. Russell 2009 MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis PLoS Pathog 5 e1000474.
21. K. Werninghaus A. Babiak O. Gross C. Holscher H. Dietrich E.M. Agger J. Mages A. Mocsai H. Schoenen K. Finger F. Nimmerjahn G.D. Brown C. Kirschning A. Heit P. Andersen H. Wagner J. Ruland R. Lang 2009 Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation J Exp Med 206 89–97.
22. B. Abel N. Thieblemont V.J. Quesniaux N. Brown J. Mpagi K. Miyake F. Bihl B. Ryffel 2002 Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice J Immunol 169 3155–3162.
23. M.B. Drennan D. Nicolle V.J. Quesniaux M. Jacobs N. Allie J. Mpagi C. Fremond H. Wagner C. Kirschning B. Ryffel 2004 Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection Am J Pathol 164 49–57.
24. K.A. Heldwein M.D. Liang T.K. Andresen K.E. Thomas A.M. Marty N. Cuesta S.N. Vogel M.J. Fenton 2003 TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG J Leukoc Biol 74 277–286.
25. N. Reiling C. Holscher A. Fehrenbach S. Kroger C.J. Kirschning S. Goyert S. Ehlers 2002 Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis J Immunol 169 3480–3484.
26. I. Sugawara H. Yamada C. Li S. Mizuno O. Takeuchi S. Akira 2003 Mycobacterial infection in TLR2 and TLR6 knockout mice Microbiol Immunol 47 327–336.
27. M.J. Robinson D. Sancho E.C. Slack S. Leibund Gut-Landmann C. Reis e Sousa 2006 Myeloid C-type lectins in innate immunity Nat Immunol 7 1258–1265.
28. A. Mocsai J. Ruland V.L. Tybulewicz 2010 The SYK tyrosine kinase: a crucial player in diverse biological functions Nat Rev Immunol 10 387–402.
29. Kerrigan AM , Brown GD: Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 234, 335–352.
30. K. Drickamer 1999 C-type lectin-like domains Curr Opin Struct Biol 9 585–590.
31. R.D. Cummings R.P. McEver 2009 C-type lectins A. Varki R.D. Cummings J.D. Esko H.H. Freeze P. Stanley C.R. Bertozzi G.W. Hart M.E. Etzler Essentials of Glycobiology Cold Spring Harbor Laboratory Press Cold Spring Harbor (NY).
32. K.L. Hsu K.T. Pilobello L.K. Mahal 2006 Analyzing the dynamic bacterial glycome with a lectin microarray approach Nat Chem Biol 2 153–157.
33. J.B. Torrelles L.S. Schlesinger 2010 Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host Tuberculosis (Edinb) 90 84–93.
34. Neyrolles O , Guilhot C: Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb), (2011).
35. H.S. Goodridge A.J. Wolf D.M. Underhill 2009 Beta-glucan recognition by the innate immune system Immunol Rev 230 38–50.
36. L.S. Schlesinger S.R. Hull T.M. Kaufman 1994 Binding of the terminal mannosyl units of lipoarabinomannan froma virulent strain of Mycobacterium tuberculosis to human macrophages J Immunol 152 4070–4079.
37. J.B. Torrelles A.K. Azad L.S. Schlesinger 2006 Fine discrimination in the recognition of individual species of phosphatidyl-myoinositol mannosides from Mycobacterium tuberculosis by Ctype lectin pattern recognition receptors J Immunol 177 1805–1816.
38. J. Nigou C. Zelle-Rieser M. Gilleron M. Thurnher G. Puzo 2001 Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor J Immunol 166 7477–7485.
39. A.G. Rothfuchs A. Bafica C.G. Feng J.G. Egen D.L. Williams G.D. Brown A. Sher 2007 Dectin-1 interaction withMycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells J Immunol 179 3463–3471.
40. M. Yadav J.S. Schorey 2006 The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria Blood 108 3168–3175.
41. I. Matsunaga D.B. Moody 2009 Mincle is a long sought receptor for mycobacterial cord factor J ExpMed 206 2865–2868.
42. E. Ishikawa T. Ishikawa Y.S. Morita K. Toyonaga H. Yamada O. Takeuchi T. Kinoshita S. Akira Y. Yoshikai S. Yamasaki 2009 Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle J Exp Med 206 2879–2888.
43. T.B. Geijtenbeek S.J. Van Vliet E.A. Koppel M. Sanchez-Hernandez C.M. Vandenbroucke-Grauls B. Appelmelk Y. Van Kooyk 2003 Mycobacteria target DC-SIGN to suppress dendritic cell function J Exp Med 197 7–17.
44. L. Tailleux O. Schwartz J.L. Herrmann E. Pivert M. Jackson A. Amara L. Legres D. Dreher L.P. Nicod J.C. Gluckman P.H. Lagrange B. Gicquel O. Neyrolles 2003 DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells J Exp Med 197 121–127.
45. E.A. Koppel I.S. Ludwig M.S. Hernandez T.L. Lowary R.R. Gadikota A.B. Tuzikov C.M. Vandenbroucke-Grauls Y. van Kooyk B.J. Appelmelk T.B. Geijtenbeek 2004 Identification of the mycobacterial carbohydrate structure that binds the C-type lectins DC-SIGN, L-SIGN and SIGNR1 Immunobiology 209 117–127.
46. C.W. Wieland E.A. Koppel J. den Dunnen S. Florquin A.N. McKenzie Y. van Kooyk T. van der Poll T.B. Geijtenbeek 2007 Mice lacking SIGNR1 have stronger T helper 1 responses to Mycobacterium tuberculosis Microbes Infect 9 134–141.
47. O.K. Bernhard J. Lai J. Wilkinson M.M. Sheil A.L. Cunningham 2004 Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4 J Biol Chem 279 51828–51835.
48. J.B. Torrelles A.K. Azad L.N. Henning T.K. Carlson L.S. Schlesinger 2008 Role of C-type lectins in mycobacterial infections Curr Drug Targets 9 102–112.
49. T.B. Geijtenbeek R. Torensma S.J. van Vliet G.C. van Duijnhoven G.J. Adema Y. van Kooyk C.G. Figdor 2000 Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses Cell 100 575–585.
50. B.M. Curtis S. Scharnowske A.J. Watson 1992 Sequence, expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120 Proc Natl Acad Sci U S A 89 8356–8360.
51. T.B. Geijtenbeek D.S. Kwon R. Torensma S.J. van Vliet G.C. van Duijnhoven J. Middel I.L. Cornelissen H.S. Nottet V.N. KewalRamani D.R. Littman C.G. Figdor Y. van Kooyk 2000 DCSIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells Cell 100 587–597.
52. R.M. Anthony F. Wermeling M.C. Karlsson J.V. Ravetch 2008 Identification of a receptor required for the anti-inflammatory activity of IVIG Proc Natl Acad Sci U S A 105 19571–19578.
53. E.J. Soilleux L.S. Morris G. Leslie J. Chehimi Q. Luo E. Levroney J. Trowsdale L.J. Montaner R.W. Doms D. Weissman N. Coleman B. Lee 2002 Constitutive and induced expression of DCSIGN on dendritic cell and macrophage subpopulations in situ and in vitro J Leukoc Biol 71 445–457.
54. L. Tailleux N. Pham-Thi A. Bergeron-Lafaurie J.L. Herrmann P. Charles O. Schwartz P. Scheinmann P.H. Lagrange J. de Blic A. Tazi B. Gicquel O. Neyrolles 2005 DC-SIGN induction in alveolar macrophages defines privileged target host cells for mycobacteria in patients with tuberculosis PLoS Med 2 e381.
55. S.R. Krutzik B. Tan H. Li M.T. Ochoa P.T. Liu S.E. Sharfstein T.G. Graeber P.A. Sieling Y.J. Liu T.H. Rea B.R. Bloom R.L. Modlin 2005 TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells NatMed 11 653–660.
56. G. Rappocciolo P. Piazza C.L. Fuller T.A. Reinhart S.C. Watkins D.T. Rowe M. Jais P. Gupta C.R. Rinaldo 2006 DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes PLoS Pathog 2 e70.
57. N. Plazolles J.M. Humbert L. Vachot B. Verrier C. Hocke F. Halary 2010 Pivotal Advance: The promotion of soluble DCSIGN release by inflammatory signals and its enhancement of cytomegalovirus-mediated cis-infection of myeloid dendritic cells J Leukoc Biol 89 329–342.
58. G. Lugo-Villarino O. Neyrolles 2011 Editorial: How to play tag? DC-SIGN shows the way J Leukoc Biol 89 321–323.
59. N. Maeda J. Nigou J.L. Herrmann M. Jackson A. Amara P.H. Lagrange G. Puzo B. Gicquel O. Neyrolles 2003 The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan J Biol Chem 278 5513–5516.
60. S. Pitarque J.L. Herrmann J.L. Duteyrat M. Jackson G.R. Stewart F. Lecointe B. Payre O. Schwartz D.B. Young G. Marchal P.H. Lagrange G. Puzo B. Gicquel J. Nigou O. Neyrolles 2005 Deciphering the molecular bases of Mycobacterium tuberculosis binding to the lectin DC-SIGN reveals an underestimated complexity Biochem J 392 615–624.
61. N.N. Driessen R. Ummels J.J. Maaskant S.S. Gurcha G.S. Besra G.D. Ainge D.S. Larsen G.F. Painter C.M. Vandenbroucke-Grauls J. Geurtsen B.J. Appelmelk 2009 Role of phosphatidylinositol mannosides in the interaction between mycobacteria and DCSIGN Infect Immun 77 4538–4547.
62. J. Geurtsen S. Chedammi J. Mesters M. Cot N.N. Driessen T. Sambou R. Kakutani R. Ummels J. Maaskant H. Takata O. Baba T. Terashima N. Bovin C.M. Vandenbroucke-Grauls J. Nigou G. Puzo A. Lemassu M. Daffe B.J. Appelmelk 2009 Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation J Immunol 183 5221–5231.
63. M.V. Carroll R.B. Sim F. Bigi A. Jakel R. Antrobus D.A. Mitchell 2011 Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG Protein Cell 1 859–870.
64. L.B. Barreiro O. Neyrolles C.L. Babb L. Tailleux H. Quach K. McElreavey P.D. Helden E.G. Hoal B. Gicquel L. Quintana-Murci 2006 Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis PLoS Med 3 e20.
65. F.O. Vannberg S.J. Chapman C.C. Khor K. Tosh S. Floyd D. Jackson-Sillah A. Crampin L. Sichali B. Bah P. Gustafson P. Aaby K.P. McAdam O. Bah-Sow C. Lienhardt G. Sirugo P. Fine A.V. Hill 2008 CD209 genetic polymorphism and tuberculosis disease PLoS One 3 e1388.
66. M. Ben-Ali L.B. Barreiro A. Chabbou R. Haltiti E. Braham O. Neyrolles K. Dellagi B. Gicquel L. Quintana-Murci M.R. Barbouche 2007 Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients Hum Immunol 68 908–912.
67. L.M. Gomez J.M. Anaya E. Sierra-Filardi J. Cadena A. Corbi J. Martin 2006 Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis Hum Immunol 67 808–811.
68. S. Ehlers 2009 DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison Eur J Cell Biol 89 95–101.
69. M. Schaefer N. Reiling C. Fessler J. Stephani I. Taniuchi F. Hatam A.O. Yildirim H. Fehrenbach K. Walter J. Ruland H. Wagner S. Ehlers T. Sparwasser 2008 Decreased pathology and prolonged survival of human DC-SIGN transgenic mice during mycobacterial infection J Immunol 180 6836–6845.
70. C.G. Park K. Takahara E. Umemoto Y. Yashima K. Matsubara Y. Matsuda B.E. Clausen K. Inaba R.M. Steinman 2001 Five mouse homologues of the human dendritic cell C-type lectin, DCSIGN Int Immunol 13 1283–1290.
71. A.S. Powlesland E.M. Ward S.K. Sadhu Y. Guo M.E. Taylor K. Drickamer 2006 Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins J Biol Chem 281 20440–20449.
72. A. Tanne O. Neyrolles 2010 C-type lectins in immune defense against pathogens: the murine DC-SIGN homologue SIGNR3 confers early protection against Mycobacterium tuberculosis infection Virulence 1 285–290.
73. C. Galustian C.G. Park W. Chai M. Kiso S.A. Bruening Y.S. Kang R.M. Steinman T. Feizi 2004 High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin Int Immunol 16 853–866.
74. K. Nagaoka K. Takahara K. Minamino T. Takeda Y. Yoshida K. Inaba 2010 Expression of C-type lectin, SIGNR3, on subsets of dendritic cells, macrophages, and monocytes J Leukoc Biol 88 913–924.
75. B.A. Kruskal K. Sastry A.B. Warner C.E. Mathieu R.A. Ezekowitz 1992 Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from the mannose receptor J Exp Med 176 1673–1680.
76. B.L. Largent K.M. Walton C.A. Hoppe Y.C. Lee R.L. Schnaar 1984 Carbohydrate-specific adhesion of alveolar macrophages to mannose-derivatized surfaces J Biol Chem 259 1764–1769.
77. N.P. Mullin P.G. Hitchen M.E. Taylor 1997 Mechanism of Ca2+ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor J Biol Chem 272 5668–5681.
78. M.E. Taylor K. Bezouska K. Drickamer 1992 Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor J Biol Chem 267 1719–1726.
79. E.J. McKenzie P.R. Taylor R.J. Stillion A.D. Lucas J. Harris S. Gordon L. Martinez-Pomares 2007 Mannose receptor expression and function define a new population of murine dendritic cells J Immunol 178 4975–4983.
80. S.J. Lee S. Evers D. Roeder A.F. Parlow J. Risteli L. Risteli Y.C. Lee T. Feizi H. Langen M.C. Nussenzweig 2002 Mannose receptor-mediated regulation of serum glycoprotein homeostasis Science 295 1898–1901.
81. G.D. Brown P.R. Taylor D.M. Reid J.A. Willment D.L. Williams L. Martinez-Pomares S.Y. Wong S. Gordon 2002 Dectin-1 is a major beta-glucan receptor on macrophages J Exp Med 196 407–412.
82. L. East C.M. Isacke 2002 The mannose receptor family Biochim Biophys Acta 1572 364–386.
83. S. Zamze L. Martinez-Pomares H. Jones P.R. Taylor R.J. Stillion S. Gordon S.Y. Wong 2002 Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor J Biol Chem 277 41613–41623.
84. O.E. Akilov R.E. Kasuboski C.R. Carter M.A. McDowell 2007 The role of mannose receptor during experimental leishmaniasis J Leukoc Biol 81 1188–1196.
85. S.J. Lee N.Y. Zheng M. Clavijo M.C. Nussenzweig 2003 Normal host defense during systemic candidiasis in mannose receptor-deficient mice Infect Immun 71 437–445.
86. S.D. Swain S.J. Lee M.C. Nussenzweig A.G. Harmsen 2003 Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo Infect Immun 71 6213–6221.
87. M.V. Rajaram M.N. Brooks J.D. Morris J.B. Torrelles A.K. Azad L.S. Schlesinger 2010 Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor gamma linking mannose receptor recognition to regulation of immune responses J Immunol 185 929–942.
88. L.M. Graham G.D. Brown 2009 The Dectin-2 family of C-type lectins in immunity and homeostasis Cytokine 48 148–155.
89. K. Sato X.L. Yang T. Yudate J.S. Chung J. Wu K. Luby-Phelps R.P. Kimberly D. Underhill P.D. Cruz Jr. K. Ariizumi 2006 Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses J Biol Chem 281 38854–38866.
90. N.A. Barrett A. Maekawa O.M. Rahman K.F. Austen Y. Kanaoka 2009 Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells J Immunol 182 1119–1128.
91. E.P. McGreal M. Rosas G.D. Brown S. Zamze S.Y. Wong S. Gordon L. Martinez-Pomares P.R. Taylor 2006 The carbohydraterecognition domain of Dectin-2 is a C-type lectin with specificity for highmannose Glycobiology 16 422–430.
92. S. Yamasaki E. Ishikawa M. Sakuma H. Hara K. Ogata T. Saito 2008 Mincle is an ITAM-coupled activating receptor that senses damaged cells Nat Immunol 9 1179–1188.
93. H. Schoenen B. Bodendorfer K. Hitchens S. Manzanero K. Werninghaus F. Nimmerjahn E.M. Agger S. Stenger P. Andersen J. Ruland G.D. Brown C. Wells R. Lang 2010 Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate J Immunol 184 2756–2760.
94. R.L. Hunter M.R. Olsen C. Jagannath J.K. Actor 2006 Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease Ann Clin Lab Sci 36 371–386.
95. G.D. Brown 2006 Dectin-1: a signalling non-TLR pattern-recognition receptor Nat Rev Immunol 6 33–43.
96. Lee HM , Yuk JM, Shin DM, Jo EK: Dectin-1 is Inducible and Plays an Essential Role for My cobacteria-Induced Innate Immune Responses in Airway Epithelial Cells. J Clin Immunol, (2009).
97. D.M. Shin C.S. Yang J.M. Yuk J.Y. Lee K.H. Kim S.J. Shin K. Takahara S.J. Lee E.K. Jo 2008 Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1 Cell Microbiol 10 1608–1621.
98. Marakalala MJ , Graham LM, Brown GD: The role of Syk/CARD9-coupled C-type lectin receptors in immunity to Mycobacterium tuberculosis infections. Clin Dev Immunol 2010, 567571 (2011).
99. M.A. Arnaout 1990 Structure and function of the leukocyte adhesion molecules CD11/CD18 Blood 75 1037–1050.
100. R.A. Newton M. Thiel N. Hogg 1997 Signaling mechanisms and the activation of leukocyte integrins J Leukoc Biol 61 422–426.
101. M.A. Velasco-Velazquez D. Barrera A. Gonzalez-Arenas C. Rosales J. Agramonte-Hevia 2003 Macrophage-Mycobacterium tuberculosis interactions: role of complement receptor 3 Microb Pathog 35 125–131.
102. B.P. Thornton V. Vetvicka M. Pitman R.C. Goldman G.D. Ross 1996 Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18) J Immunol 156 1235–1246.
103. L.M. Thorson D. Doxsee M.G. Scott P. Wheeler R.W. Stokes 2001 Effect of mycobacterial phospholipids on interaction of Mycobacterium tuberculosis with macrophages Infect Immun 69 2172–2179.
104. H. Tada S. Aiba K. Shibata T. Ohteki H. Takada 2005 Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells Infect Immun 73 7967–7976.
105. C. Villeneuve M. Gilleron I. Maridonneau-Parini M. Daffe C. Astarie-Dequeker G. Etienne 2005 Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process J Lipid Res 46 475–483.
106. M.D. Melo I.R. Catchpole G. Haggar R.W. Stokes 2000 Utilization of CD11b knockout mice to characterize the role of complement receptor 3 (CR3, CD11b/CD18) in the growth of Mycobacterium tuberculosis in macrophages Cell Immunol 205 13–23.
107. C. Hu T. Mayadas-Norton K. Tanaka J. Chan P. Salgame 2000 Mycobacterium tuberculosis infection in complement receptor 3-deficient mice J Immunol 165 2596–2602.
108. Y. Kuroki M. Takahashi C. Nishitani 2007 Pulmonary collectins in innate immunity of the lung CellMicrobiol 9 1871–1879.
109. L. Hall-Stoodley G. Watts J.E. Crowther A. Balagopal J.B. Torrelles J. Robison-Cox R.F. Bargatze A.G. Harmsen E.C. Crouch L.S. Schlesinger 2006 Mycobacterium tuberculosis binding to human surfactant proteins A and D, fibronectin, and small airway epithelial cells under shear conditions Infect Immun 74 3587–3596.
110. J. Perez-Gil 2008 Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions Biochim Biophys Acta 1778 1676–1695.
111. P.S. Kingma J.A. Whitsett 2006 In defense of the lung: surfactant protein A and surfactant protein D Curr Opin Pharmacol 6 277–283.
112. G.L. Sorensen S. Husby U. Holmskov 2007 Surfactant protein A and surfactant protein D variation in pulmonary disease Immunobiology 212 381–416.
113. J.R. Wright 2005 Immunoregulatory functions of surfactant proteins Nat Rev Immunol 5 58–68.
114. P.S. Kingma L. Zhang M. Ikegami K. Hartshorn F.X. McCormack J.A. Whitsett 2006 Correction of pulmonary abnormalities in Sftpd-/-mice requires the collagenous domain of surfactant protein D J Biol Chem 281 24496–24505.
115. A.A. Beharka C.D. Gaynor B.K. Kang D.R. Voelker F.X. McCormack L.S. Schlesinger 2002 Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages J Immunol 169 3565–3573.
116. J.F. Downing R. Pasula J.R. Wright H.L. Twigg 3rd W.J. Martin 2nd 1995 Surfactant protein a promotes attachment ofMycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus Proc NatlAcad Sci U S A 92 4848–4852.
117. J.S. Ferguson J.L. Martin A.K. Azad T.R. McCarthy P.B. Kang D.R. Voelker E.C. Crouch L.S. Schlesinger 2006 Surfactant protein D increases fusion of Mycobacterium tuberculosis-containing phagosomes with lysosomes in human macrophages Infect Immun 74 7005–7009.
118. J.S. Ferguson D.R. Voelker F.X. McCormack L.S. Schlesinger 1999 Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages J Immunol 163 312–321.
119. C.D. Gaynor F.X. McCormack D.R. Voelker S.E. McGowan L.S. Schlesinger 1995 Pulmonary surfactant proteinA mediates enhanced phagocytosis ofMycobacterium tuberculosis by a direct interaction with human macrophages J Immunol 155 5343–5351.
120. J.A. Gold Y. Hoshino N. Tanaka W.N. Rom B. Raju R. Condos M.D. Weiden 2004 Surfactant protein A modulates the inflammatory response in macrophages during tuberculosis Infect Immun 72 645–650.
121. R. Pasula J.F. Downing J.R. Wright D.L. Kachel T.E. Davis Jr. W.J. Martin 2nd 1997 Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages Am J Respir Cell Mol Biol 17 209–217.
122. L.F. Weikert J.P. Lopez R. Abdolrasulnia Z.C. Chroneos V.L. Shepherd 2000 Surfactant protein A enhances mycobacterial killing by rat macrophages through a nitric oxide-dependent pathway Am J Physiol Lung Cell Mol Physiol 279 L216–223.
123. S. Sidobre J. Nigou G. Puzo M. Riviere 2000 Lipoglycans are putative ligands for the human pulmonary surfactant proteinA attachment to mycobacteria. Critical role of the lipids for lectin-carbohydrate recognition J Biol Chem 275 2415–2422.
124. T.K. Carlson J.B. Torrelles K. Smith T. Horlacher R. Castelli P.H. Seeberger E.C. Crouch L.S. Schlesinger 2009 Critical role of amino acid position 343 of surfactant protein-D in the selective binding of glycolipids from Mycobacterium tuberculosis Glycobiology 19 1473–1484.
125. A. Ragas L. Roussel G. Puzo M. Riviere 2007 TheMycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A J Biol Chem 282 5133–5142.
126. K. Kuronuma H. Sano K. Kato K. Kudo N. Hyakushima S. Yokota H. Takahashi N. Fujii H. Suzuki T. Kodama S. Abe Y. Kuroki 2004 Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A J Biol Chem 279 21421–21430.
127. M. Gil F.X. McCormack A.M. Levine 2009 Surfactant protein A modulates cell surface expression of CR3 on alveolar macrophages and enhances CR3-mediated phagocytosis J Biol Chem 284 7495–7504.
128. Whitsett JA , Wert SE, Weaver TE: Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61, 105–119.
129. M. Gonzalez-Juarrero J.M. Hattle A. Izzo A.P. Junqueira-Kipnis T.S. Shim B.C. Trapnell A.M. Cooper I.M. Orme 2005 Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to controlMycobacterium tuberculosis infection J Leukoc Biol 77 914–922.
130. S. Malik C.M. Greenwood T. Eguale A. Kifle J. Beyene A. Habte A. Tadesse H. Gebrexabher S. Britton E. Schurr 2006 Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia Hum Genet 118 752–759.
131. T. Madan S. Saxena K.J. Murthy K. Muralidhar P.U. Sarma 2002 Association of polymorphisms in the collagen region of human SP-A1 and SP-A2 genes with pulmonary tuberculosis in Indian population Clin Chem LabMed 40 1002–1008.
132. W.K. Ip K. Takahashi R.A. Ezekowitz L.M. Stuart 2009 Mannosebinding lectin and innate immunity Immunol Rev 230 9–21.
133. M. Nonaka B.Y. Ma M. Ohtani A. Yamamoto M. Murata K. Totani Y. Ito K. Miwa W. Nogami N. Kawasaki T. Kawasaki 2007 Subcellular localization and physiological significance of intracellular mannan-binding protein J Biol Chem 282 17908–17920.
134. J.H. Lu S. Thiel H. Wiedemann R. Timpl K.B. Reid 1990 Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q J Immunol 144 2287–2294.
135. Y. Yokota T. Arai T. Kawasaki 1995 Oligomeric structures required for complement activation of serum mannan-binding proteins J Biochem 117 414–419.
136. K. Drickamer 1992 Engineering galactose-binding activity into a C-typemannose-binding protein Nature 360 183–186.
137. W.I. Weis K. Drickamer W.A. Hendrickson 1992 Structure of a Ctype mannose-binding protein complexed with an oligosaccharide Nature 360 127–134.
138. K. Takahashi 2008 Lessons learned from murine models of mannose-binding lectin deficiency Biochem Soc Trans 36 1487–1490.
139. P. Garred M. Harboe T. Oettinger C. Koch A. Svejgaard 1994 Dual role of mannan-binding protein in infections: another case of heterosis? Eur J Immunogenet 21 125–131.
140. V.Y. Polotsky J.T. Belisle K. Mikusova R.A. Ezekowitz K.A. Joiner 1997 Interaction of human mannose-binding protein withMycobacterium avium J Infect Dis 175 1159–1168.
141. R. Bellamy 1998 Genetics and pulmonary medicine. 3. Genetic susceptibility to tuberculosis in human populations Thorax 53 588–593.
142. R. Bellamy C. Ruwende K.P. McAdam M. Thursz M. Sumiya J. Summerfield S.C. Gilbert T. Corrah D. Kwiatkowski H.C. Whittle A.V. Hill 1998 Mannose binding protein deficiency is not associated with malaria, hepatitis B carriage nor tuberculosis in Africans QJM 91 13–18.
143. R. Capparelli M. Iannaccone D. Palumbo C. Medaglia E. Moscariello A. Russo D. Iannelli 2009 Role played by human mannose-binding lectin polymorphisms in pulmonary tuberculosis J Infect Dis 199 666–672.
144. P. Selvaraj P.R. Narayanan A.M. Reetha 1999 Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India Tuber Lung Dis 79 221–227.
145. P. Verdu L.B. Barreiro E. Patin A. Gessain O. Cassar J.R. Kidd K.K. Kidd D.M. Behar A. Froment E. Heyer L. Sica J.L. Casanova L. Abel L. Quintana-Murci 2006 Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles Hum Mol Genet 15 2650–2658.
146. L. Shi K. Takahashi J. Dundee S. Shahroor-Karni S. Thiel J.C. Jensenius F. Gad M.R. Hamblin K.N. Sastry R.A. Ezekowitz 2004 Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus J Exp Med 199 1379–1390.
147. W.K. Ip K. Takahashi K.J. Moore L.M. Stuart R.A. Ezekowitz 2008 Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome J Exp Med 205 169–181.
148. Saiga H , Shimada Y, Takeda K: Innate immune effectors in mycobacterial infection. Clin Dev Immunol 2011, Article ID 347594 (2011).
149. G. Hajishengallis J.D. Lambris 2011 Microbial manipulation of receptor crosstalk in innate immunity Nat Rev Immunol 11 187–200.
150. M. Natarajan K.M. Lin R.C. Hsueh P.C. Sternweis R. Ranganathan 2006 A global analysis of cross-talk in a mammalian cellular signalling network Nat Cell Biol 8 571–580.
151. Goodridge HS , Underhill DM: Fungal Recognition by TLR2 and Dectin-1. Handb Exp Pharmacol, 87–109 (2008).
152. S. Ogawa J. Lozach C. Benner G. Pascual R.K. Tangirala S. Westin A. Hoffmann S. Subramaniam M. David M.G. Rosenfeld C.K. Glass 2005 Molecular determinants of crosstalk between nuclear receptors and toll-like receptors Cell 122 707–721.
153. D. Lukashev A. Ohta S. Apasov J.F. Chen M. Sitkovsky 2004 Cutting edge: Physiologic attenuation of proinflammatory transcription by the Gs protein-coupledA2A adenosine receptor in vivo J Immunol 173 21–24.
154. M.J. Marakalala R. Guler L. Matika G. Murray M. Jacobs F. Brombacher A.G. Rothfuchs A. Sher G.D. Brown 2010 The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice Microbes Infect 13 198–201.
155. A. Dorhoi C. Desel V. Yeremeev L. Pradl V. Brinkmann H.J. Mollenkopf K. Hanke O. Gross J. Ruland S.H. Kaufmann 2010 The adaptor molecule CARD9 is essential for tuberculosis control J Exp Med 207 777–792.
156. Mascanfroni ID , Cerliani JP, Dergan-Dylon S, Croci DO, Ilarregui JM, Rabinovich GA: Endogenous lectins shape the function of dendritic cells and tailor adaptive immunity: Mechanisms and biomedical applications. Int Immunopharmacol, (2011).
157. D.M. Rennick M.M. Fort N.J. Davidson 1997 Studies with IL-10−/− mice: an overview J Leukoc Biol 61 389–396.
158. S.Z. Sheikh S.E. Plevy 2010 The role of the macrophage in sentinel responses in intestinal immunity Curr Opin Gastroenterol 26 578–582.
159. Y.K. Lee S.K. Mazmanian 2011 Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330 1768–1773.
160. N. Cerf-Bensussan V. Gaboriau-Routhiau 2010 The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 10 735–744.
161. N. Dulphy J.L. Herrmann J. Nigou D. Rea N. Boissel G. Puzo D. Charron P.H. Lagrange A. Toubert 2007 Intermediate maturation of Mycobacterium tuberculosis LAM-activated human dendritic cells Cell Microbiol 9 1412–1425.
162. M. Foti F. Granucci P. Ricciardi-Castagnoli 2004 A central role for tissue-resident dendritic cells in innate responses Trends Immunol 25 650–654.
163. M.E. Remoli E. Giacomini E. Petruccioli V. Gafa M. Severa M.C. Gagliardi E. Iona R. Pine R. Nisini E.M. Coccia 2010 Bystander inhibition of dendritic cell differentiation by Mycobacterium tuberculosis-induced IL-10 Immunol Cell Biol 89 437–446.
164. T. Schreiber S. Ehlers L. Heitmann A. Rausch J. Mages P.J. Murray R. Lang C. Holscher 2009 Autocrine IL-10 induces hallmarks of alternative activation inmacrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity J Immunol 183 1301–1312.
165. K.C. El Kasmi J.E. Qualls J.T. Pesce A.M. Smith R.W. Thompson M. Henao-Tamayo R.J. Basaraba T. Konig U. Schleicher M.S. Koo G. Kaplan K.A. Fitzgerald E.I. Tuomanen I.M. Orme T.D. Kanneganti C. Bogdan T.A. Wynn P.J. Murray 2008 Tolllike receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens Nat Immunol 9 1399–1406.
166. P.T. Liu S. Stenger D.H. Tang R.L. Modlin 2007 Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin J Immunol 179 2060–2063.
167. B. Rivas-Santiago S.K. Schwander C. Sarabia G. Diamond M.E. Klein-Patel R. Hernandez-Pando J.J. Ellner E. Sada 2005 Human {beta}-defensin 2 is expressed and associated with Mycobacterium tuberculosis during infection of human alveolar epithelial cells Infect Immun 73 4505–4511.
168. A. Kumar J. Zhang F.S. Yu 2006 Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells Microbes Infect 8 380–389.
169. S.A. Gomez C.L. Arguelles D. Guerrieri N.L. Tateosian N.O. Amiano R. Slimovich P.C. Maffia E. Abbate R.M. Musella V.E. Garcia H.E. Chuluyan 2009 Secretory leukocyte protease inhibitor: a secreted pattern recognition receptor for mycobacteria Am J Respir Crit Care Med 179 247–253.
170. J. Nishimura H. Saiga S. Sato M. Okuyama H. Kayama H. Kuwata S. Matsumoto T. Nishida Y. Sawa S. Akira Y. Yoshikai M. Yamamoto K. Takeda 2008 Potent antimycobacterial activity of mouse secretory leukocyte protease inhibitor J Immunol 180 4032–4039.
171. A. Ding H. Yu J. Yang S. Shi S. Ehrt 2005 Induction ofmacrophagederived SLPI by Mycobacterium tuberculosis depends on TLR2 but not MyD88 Immunology 116 381–389.
172. T.H. Flo K.D. Smith S. Sato D.J. Rodriguez M.A. Holmes R.K. Strong S. Akira A. Aderem 2004 Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron Nature 432 917–921.
173. O. Halaas M. Steigedal M. Haug J.A. Awuh L. Ryan A. Brech S. Sato H. Husebye G.A. Cangelosi S. Akira R.K. Strong T. Espevik T.H. Flo 2010 Intracellular Mycobacterium avium intersect transferrin in the Rab11(+) recycling endocytic pathway and avoid lipocalin 2 trafficking to the lysosomal pathway J Infect Dis 201 783–792.
174. H. Saiga J. Nishimura H. Kuwata M. Okuyama S. Matsumoto S. Sato M. Matsumoto S. Akira Y. Yoshikai K. Honda M. Yamamoto K. Takeda 2008 Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium J Immunol 181 8521–8527.
175. M.D. Howell N. Novak T. Bieber S. Pastore G. Girolomoni M. Boguniewicz J. Streib C. Wong R.L. Gallo D.Y. Leung 2005 Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis J Invest Dermatol 125 738–745.
176. N. van der Wel D. Hava D. Houben D. Fluitsma M. van Zon J. Pierson M. Brenner P.J. Peters 2007 M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells Cell 129 1287–1298.
177. M.G. Gutierrez S.S. Master S.B. Singh G.A. Taylor M.I. Colombo V. Deretic 2004 Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages Cell 119 753–766.
178. B. Levine N. Mizushima H.W. Virgin 2011 Autophagy in immunity and inflammation Nature 469 323–335.
179. E.K. Jo 2010 Innate immunity to mycobacteria: vitamin D, autophagy Cell Microbiol 12 1026–1035.
180. C.G. Feng C.M. Collazo-Custodio M. Eckhaus S. Hieny Y. Belkaid K. Elkins D. Jankovic G.A. Taylor A. Sher 2004 Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia J Immunol 172 1163–1168.
181. Y. Xu C. Jagannath X.D. Liu A. Sharafkhaneh K.E. Kolodziejska N.T. Eissa 2007 Toll-like receptor 4 is a sensor for autophagy associated with innate immunity Immunity 27 135–144.
182. V. Deretic 2008 Autophagy, an immunologic magic bullet: Mycobacterium tuberculosis phagosome maturation block and how to bypass it Future Microbiol 3 517–524.
183. V. Deretic 2011 Autophagy in immunity and cell-autonomous defense against intracellular microbes Immunol Rev 240 92–104.
184. S. Pankiv T.H. Clausen T. Lamark A. Brech J.A. Bruun H. Outzen A. Overvatn G. Bjorkoy T. Johansen 2007 p62/SQSTM1 binds directly toAtg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy J Biol Chem 282 24131–24145.
185. M. Ponpuak A.S. Davis E.A. Roberts M.A. Delgado C. Dinkins Z. Zhao H. Virgin G.B. Kyei T. Johansen I. Vergne V. Deretic 2010 Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties Immunity 32 329–341.
186. S. Alonso K. Pethe D.G. Russell G.E. Purdy 2007 Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy Proc Natl Acad Sci U S A 104 6031–6036.
187. H.J. Kim S. Lee J.U. Jung 2010 When autophagy meets viruses: a double-edged sword with functions in defense and offense Semin Immunopathol 32 323–341.
188. D. Kumar L. Nath M.A. Kamal A. Varshney A. Jain S. Singh K.V. Rao 2010 Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis Cell 140 731–743.
189. J. Van Grol C. Subauste R.M. Andrade K. Fujinaga J. Nelson C.S. Subauste 2010 HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3 PLoS One 5 e11733.
190. H.J. Park S.J. Lee S.H. Kim J. Han J. Bae S.J. Kim C.G. Park T. Chun 2010 IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway Mol Immunol 48 720–727.
191. P. Stahl P.H. Schlesinger E. Sigardson J.S. Rodman Y.C. Lee 1980 Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling Cell 19 207–215.