Authors:
G. Lugo-Villarino CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France
UPS, IPBS, Université de Toulouse, F-31077, Toulouse, France

Search for other papers by G. Lugo-Villarino in
Current site
Google Scholar
PubMed
Close
,
D. Hudrisier CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France
UPS, IPBS, Université de Toulouse, F-31077, Toulouse, France

Search for other papers by D. Hudrisier in
Current site
Google Scholar
PubMed
Close
,
A. Tanne Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by A. Tanne in
Current site
Google Scholar
PubMed
Close
, and
Olivier Neyrolles CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077, Toulouse, France
UPS, IPBS, Université de Toulouse, F-31077, Toulouse, France

Search for other papers by Olivier Neyrolles in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The pattern of receptors sensing pathogens onto host cells is a key factor that can determine the outcome of the infection. This is particularly true when such receptors belong to the family of pattern recognition receptors involved in immunity. Mycobacterium tuberculosis, the etiologic agent of tuberculosis interacts with a wide range of pattern-recognition receptors present on phagocytes and belonging to the Toll-like, Nod-like, scavenger and C-type lectin receptor families. A complex scenario where those receptors can establish cross-talks in recognizing pathogens or microbial determinants including mycobacterial components in different spatial and temporal context starts to emerge as a key event in the outcome of the immune response, and thus, the control of the infection. In this review, we will focus our attention on the family of calcium-dependent carbohydrate receptors, the C-type lectin receptors, that is of growing importance in the context of microbial infections. Members of this family appear to be key innate immune receptors of mycobacteria, capable of cross-talk with other pattern recognition receptors to induce or modulate the inflammatory context upon mycobacterial infection.

  • 1. WHO (2010) Global tuberculosis control report 2010.

  • 2. E.K. Jo 2008 Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs Curr Opin Infect Dis 21 279286.

  • 3. J.J. Garcia-Vallejo Y. van Kooyk 2009 Endogenous ligands for Ctype lectin receptors: the true regulators of immune homeostasis Immunol Rev 230 2237.

    • Search Google Scholar
    • Export Citation
  • 4. J.L. Casanova L. Abel L. Quintana-Murci 2011 Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics Annu Rev Immunol 29 447491.

    • Search Google Scholar
    • Export Citation
  • 5. N.W. Schroder R.R. Schumann 2005 Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease Lancet Infect Dis 5 156164.

    • Search Google Scholar
    • Export Citation
  • 6. S.E. Turvey T.R. Hawn 2006 Towards subtlety: understanding the role of Toll-like receptor signaling in susceptibility to human infections Clin Immunol 120 19.

    • Search Google Scholar
    • Export Citation
  • 7. J.J. Yim H.W. Lee H.S. Lee Y.W. Kim S.K. Han Y.S. Shim S.M. Holland 2006 The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans Genes Immun 7 150155.

    • Search Google Scholar
    • Export Citation
  • 8. X. Ma Y. Liu B.B. Gowen E.A. Graviss A.G. Clark J.M. Musser 2007 Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease PLoS One 2 e1318.

    • Search Google Scholar
    • Export Citation
  • 9. D.R. Velez C. Wejse M.E. Stryjewski E. Abbate W.F. Hulme J.L. Myers R. Estevan S.G. Patillo R. Olesen A. Tacconelli G. Sirugo J.R. Gilbert C.D. Hamilton W.K. Scott 2009 Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans Hum Genet 127 6573.

    • Search Google Scholar
    • Export Citation
  • 10. S. Davila M.L. Hibberd R. Hari Dass H.E. Wong E. Sahiratmadja C. Bonnard B. Alisjahbana J.S. Szeszko Y. Balabanova F. Drobniewski R. van Crevel E. van de Vosse S. Nejentsev T.H. Ottenhoff M. Seielstad 2008 Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis PLoS Genet 4 e1000218.

    • Search Google Scholar
    • Export Citation
  • 11. C.M. Austin X. Ma E.A. Graviss 2008 Common nonsynonymous polymorphisms in the NOD2 gene are associated with resistance or susceptibility to tuberculosis disease inAfricanAmericans J Infect Dis 197 17131716.

    • Search Google Scholar
    • Export Citation
  • 12. A. Fortin L. Abel J.L. Casanova P. Gros 2007 Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis Annu Rev Genomics Hum Genet 8 163192.

    • Search Google Scholar
    • Export Citation
  • 13. C. Holscher N. Reiling U.E. Schaible A. Holscher C. Bathmann D. Korbel I. Lenz T. Sonntag S. Kroger S. Akira H. Mossmann C.J. Kirschning H. Wagner M. Freudenberg S. Ehlers 2008 Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9 Eur J Immunol 38 680694.

    • Search Google Scholar
    • Export Citation
  • 14. D.S. Korbel B.E. Schneider U.E. Schaible 2008 Innate immunity in tuberculosis: myths and truth Microbes Infect 10 9951004.

  • 15. N. Reiling S. Ehlers C. Holscher 2008 MyDths and un-TOLLed truths: sensor, instructive and effector immunity to tuberculosis Immunol Lett 116 1523.

    • Search Google Scholar
    • Export Citation
  • 16. N. Court V. Vasseur R. Vacher C. Fremond Y. Shebzukhov V.V. Yeremeev I. Maillet S.A. Nedospasov S. Gordon P.G. Fallon H. Suzuki B. Ryffel V.F. Quesniaux 2010 Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection J Immunol 184 70577070.

    • Search Google Scholar
    • Export Citation
  • 17. A. Bafica C.A. Scanga C.G. Feng C. Leifer A. Cheever A. Sher 2005 TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis J Exp Med 202 17151724.

    • Search Google Scholar
    • Export Citation
  • 18. A. Blumenthal T. Kobayashi L.M. Pierini N. Banaei J.D. Ernst K. Miyake S. Ehrt 2009 RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins Cell Host Microbe 5 3546.

    • Search Google Scholar
    • Export Citation
  • 19. A. Tanne B. Ma F. Boudou L. Tailleux H. Botella E. Badell F. Levillain M.E. Taylor K. Drickamer J. Nigou K.M. Dobos G. Puzo D. Vestweber M.K. Wild M. Marcinko P. Sobieszczuk L. Stewart D. Lebus B. Gicquel O. Neyrolles 2009 A murine DCSIGN homologue contributes to early host defense against Mycobacterium tuberculosis J Exp Med 206 22052220.

    • Search Google Scholar
    • Export Citation
  • 20. D.M. Bowdish K. Sakamoto M.J. Kim M. Kroos S. Mukhopadhyay C.A. Leifer K. Tryggvason S. Gordon D.G. Russell 2009 MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis PLoS Pathog 5 e1000474.

    • Search Google Scholar
    • Export Citation
  • 21. K. Werninghaus A. Babiak O. Gross C. Holscher H. Dietrich E.M. Agger J. Mages A. Mocsai H. Schoenen K. Finger F. Nimmerjahn G.D. Brown C. Kirschning A. Heit P. Andersen H. Wagner J. Ruland R. Lang 2009 Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation J Exp Med 206 8997.

    • Search Google Scholar
    • Export Citation
  • 22. B. Abel N. Thieblemont V.J. Quesniaux N. Brown J. Mpagi K. Miyake F. Bihl B. Ryffel 2002 Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice J Immunol 169 31553162.

    • Search Google Scholar
    • Export Citation
  • 23. M.B. Drennan D. Nicolle V.J. Quesniaux M. Jacobs N. Allie J. Mpagi C. Fremond H. Wagner C. Kirschning B. Ryffel 2004 Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection Am J Pathol 164 4957.

    • Search Google Scholar
    • Export Citation
  • 24. K.A. Heldwein M.D. Liang T.K. Andresen K.E. Thomas A.M. Marty N. Cuesta S.N. Vogel M.J. Fenton 2003 TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG J Leukoc Biol 74 277286.

    • Search Google Scholar
    • Export Citation
  • 25. N. Reiling C. Holscher A. Fehrenbach S. Kroger C.J. Kirschning S. Goyert S. Ehlers 2002 Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis J Immunol 169 34803484.

    • Search Google Scholar
    • Export Citation
  • 26. I. Sugawara H. Yamada C. Li S. Mizuno O. Takeuchi S. Akira 2003 Mycobacterial infection in TLR2 and TLR6 knockout mice Microbiol Immunol 47 327336.

    • Search Google Scholar
    • Export Citation
  • 27. M.J. Robinson D. Sancho E.C. Slack S. Leibund Gut-Landmann C. Reis e Sousa 2006 Myeloid C-type lectins in innate immunity Nat Immunol 7 12581265.

    • Search Google Scholar
    • Export Citation
  • 28. A. Mocsai J. Ruland V.L. Tybulewicz 2010 The SYK tyrosine kinase: a crucial player in diverse biological functions Nat Rev Immunol 10 387402.

    • Search Google Scholar
    • Export Citation
  • 29. Kerrigan AM , Brown GD: Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 234, 335352.

    • Search Google Scholar
    • Export Citation
  • 30. K. Drickamer 1999 C-type lectin-like domains Curr Opin Struct Biol 9 585590.

  • 31. R.D. Cummings R.P. McEver 2009 C-type lectins A. Varki R.D. Cummings J.D. Esko H.H. Freeze P. Stanley C.R. Bertozzi G.W. Hart M.E. Etzler Essentials of Glycobiology Cold Spring Harbor Laboratory Press Cold Spring Harbor (NY).

    • Search Google Scholar
    • Export Citation
  • 32. K.L. Hsu K.T. Pilobello L.K. Mahal 2006 Analyzing the dynamic bacterial glycome with a lectin microarray approach Nat Chem Biol 2 153157.

    • Search Google Scholar
    • Export Citation
  • 33. J.B. Torrelles L.S. Schlesinger 2010 Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host Tuberculosis (Edinb) 90 8493.

    • Search Google Scholar
    • Export Citation
  • 34. Neyrolles O , Guilhot C: Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb), (2011).

    • Search Google Scholar
    • Export Citation
  • 35. H.S. Goodridge A.J. Wolf D.M. Underhill 2009 Beta-glucan recognition by the innate immune system Immunol Rev 230 3850.

  • 36. L.S. Schlesinger S.R. Hull T.M. Kaufman 1994 Binding of the terminal mannosyl units of lipoarabinomannan froma virulent strain of Mycobacterium tuberculosis to human macrophages J Immunol 152 40704079.

    • Search Google Scholar
    • Export Citation
  • 37. J.B. Torrelles A.K. Azad L.S. Schlesinger 2006 Fine discrimination in the recognition of individual species of phosphatidyl-myoinositol mannosides from Mycobacterium tuberculosis by Ctype lectin pattern recognition receptors J Immunol 177 18051816.

    • Search Google Scholar
    • Export Citation
  • 38. J. Nigou C. Zelle-Rieser M. Gilleron M. Thurnher G. Puzo 2001 Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor J Immunol 166 74777485.

    • Search Google Scholar
    • Export Citation
  • 39. A.G. Rothfuchs A. Bafica C.G. Feng J.G. Egen D.L. Williams G.D. Brown A. Sher 2007 Dectin-1 interaction withMycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells J Immunol 179 34633471.

    • Search Google Scholar
    • Export Citation
  • 40. M. Yadav J.S. Schorey 2006 The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria Blood 108 31683175.

    • Search Google Scholar
    • Export Citation
  • 41. I. Matsunaga D.B. Moody 2009 Mincle is a long sought receptor for mycobacterial cord factor J ExpMed 206 28652868.

  • 42. E. Ishikawa T. Ishikawa Y.S. Morita K. Toyonaga H. Yamada O. Takeuchi T. Kinoshita S. Akira Y. Yoshikai S. Yamasaki 2009 Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle J Exp Med 206 28792888.

    • Search Google Scholar
    • Export Citation
  • 43. T.B. Geijtenbeek S.J. Van Vliet E.A. Koppel M. Sanchez-Hernandez C.M. Vandenbroucke-Grauls B. Appelmelk Y. Van Kooyk 2003 Mycobacteria target DC-SIGN to suppress dendritic cell function J Exp Med 197 717.

    • Search Google Scholar
    • Export Citation
  • 44. L. Tailleux O. Schwartz J.L. Herrmann E. Pivert M. Jackson A. Amara L. Legres D. Dreher L.P. Nicod J.C. Gluckman P.H. Lagrange B. Gicquel O. Neyrolles 2003 DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells J Exp Med 197 121127.

    • Search Google Scholar
    • Export Citation
  • 45. E.A. Koppel I.S. Ludwig M.S. Hernandez T.L. Lowary R.R. Gadikota A.B. Tuzikov C.M. Vandenbroucke-Grauls Y. van Kooyk B.J. Appelmelk T.B. Geijtenbeek 2004 Identification of the mycobacterial carbohydrate structure that binds the C-type lectins DC-SIGN, L-SIGN and SIGNR1 Immunobiology 209 117127.

    • Search Google Scholar
    • Export Citation
  • 46. C.W. Wieland E.A. Koppel J. den Dunnen S. Florquin A.N. McKenzie Y. van Kooyk T. van der Poll T.B. Geijtenbeek 2007 Mice lacking SIGNR1 have stronger T helper 1 responses to Mycobacterium tuberculosis Microbes Infect 9 134141.

    • Search Google Scholar
    • Export Citation
  • 47. O.K. Bernhard J. Lai J. Wilkinson M.M. Sheil A.L. Cunningham 2004 Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4 J Biol Chem 279 5182851835.

    • Search Google Scholar
    • Export Citation
  • 48. J.B. Torrelles A.K. Azad L.N. Henning T.K. Carlson L.S. Schlesinger 2008 Role of C-type lectins in mycobacterial infections Curr Drug Targets 9 102112.

    • Search Google Scholar
    • Export Citation
  • 49. T.B. Geijtenbeek R. Torensma S.J. van Vliet G.C. van Duijnhoven G.J. Adema Y. van Kooyk C.G. Figdor 2000 Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses Cell 100 575585.

    • Search Google Scholar
    • Export Citation
  • 50. B.M. Curtis S. Scharnowske A.J. Watson 1992 Sequence, expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120 Proc Natl Acad Sci U S A 89 83568360.

    • Search Google Scholar
    • Export Citation
  • 51. T.B. Geijtenbeek D.S. Kwon R. Torensma S.J. van Vliet G.C. van Duijnhoven J. Middel I.L. Cornelissen H.S. Nottet V.N. KewalRamani D.R. Littman C.G. Figdor Y. van Kooyk 2000 DCSIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells Cell 100 587597.

    • Search Google Scholar
    • Export Citation
  • 52. R.M. Anthony F. Wermeling M.C. Karlsson J.V. Ravetch 2008 Identification of a receptor required for the anti-inflammatory activity of IVIG Proc Natl Acad Sci U S A 105 1957119578.

    • Search Google Scholar
    • Export Citation
  • 53. E.J. Soilleux L.S. Morris G. Leslie J. Chehimi Q. Luo E. Levroney J. Trowsdale L.J. Montaner R.W. Doms D. Weissman N. Coleman B. Lee 2002 Constitutive and induced expression of DCSIGN on dendritic cell and macrophage subpopulations in situ and in vitro J Leukoc Biol 71 445457.

    • Search Google Scholar
    • Export Citation
  • 54. L. Tailleux N. Pham-Thi A. Bergeron-Lafaurie J.L. Herrmann P. Charles O. Schwartz P. Scheinmann P.H. Lagrange J. de Blic A. Tazi B. Gicquel O. Neyrolles 2005 DC-SIGN induction in alveolar macrophages defines privileged target host cells for mycobacteria in patients with tuberculosis PLoS Med 2 e381.

    • Search Google Scholar
    • Export Citation
  • 55. S.R. Krutzik B. Tan H. Li M.T. Ochoa P.T. Liu S.E. Sharfstein T.G. Graeber P.A. Sieling Y.J. Liu T.H. Rea B.R. Bloom R.L. Modlin 2005 TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells NatMed 11 653660.

    • Search Google Scholar
    • Export Citation
  • 56. G. Rappocciolo P. Piazza C.L. Fuller T.A. Reinhart S.C. Watkins D.T. Rowe M. Jais P. Gupta C.R. Rinaldo 2006 DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes PLoS Pathog 2 e70.

    • Search Google Scholar
    • Export Citation
  • 57. N. Plazolles J.M. Humbert L. Vachot B. Verrier C. Hocke F. Halary 2010 Pivotal Advance: The promotion of soluble DCSIGN release by inflammatory signals and its enhancement of cytomegalovirus-mediated cis-infection of myeloid dendritic cells J Leukoc Biol 89 329342.

    • Search Google Scholar
    • Export Citation
  • 58. G. Lugo-Villarino O. Neyrolles 2011 Editorial: How to play tag? DC-SIGN shows the way J Leukoc Biol 89 321323.

  • 59. N. Maeda J. Nigou J.L. Herrmann M. Jackson A. Amara P.H. Lagrange G. Puzo B. Gicquel O. Neyrolles 2003 The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan J Biol Chem 278 55135516.

    • Search Google Scholar
    • Export Citation
  • 60. S. Pitarque J.L. Herrmann J.L. Duteyrat M. Jackson G.R. Stewart F. Lecointe B. Payre O. Schwartz D.B. Young G. Marchal P.H. Lagrange G. Puzo B. Gicquel J. Nigou O. Neyrolles 2005 Deciphering the molecular bases of Mycobacterium tuberculosis binding to the lectin DC-SIGN reveals an underestimated complexity Biochem J 392 615624.

    • Search Google Scholar
    • Export Citation
  • 61. N.N. Driessen R. Ummels J.J. Maaskant S.S. Gurcha G.S. Besra G.D. Ainge D.S. Larsen G.F. Painter C.M. Vandenbroucke-Grauls J. Geurtsen B.J. Appelmelk 2009 Role of phosphatidylinositol mannosides in the interaction between mycobacteria and DCSIGN Infect Immun 77 45384547.

    • Search Google Scholar
    • Export Citation
  • 62. J. Geurtsen S. Chedammi J. Mesters M. Cot N.N. Driessen T. Sambou R. Kakutani R. Ummels J. Maaskant H. Takata O. Baba T. Terashima N. Bovin C.M. Vandenbroucke-Grauls J. Nigou G. Puzo A. Lemassu M. Daffe B.J. Appelmelk 2009 Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation J Immunol 183 52215231.

    • Search Google Scholar
    • Export Citation
  • 63. M.V. Carroll R.B. Sim F. Bigi A. Jakel R. Antrobus D.A. Mitchell 2011 Identification of four novel DC-SIGN ligands on Mycobacterium bovis BCG Protein Cell 1 859870.

    • Search Google Scholar
    • Export Citation
  • 64. L.B. Barreiro O. Neyrolles C.L. Babb L. Tailleux H. Quach K. McElreavey P.D. Helden E.G. Hoal B. Gicquel L. Quintana-Murci 2006 Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis PLoS Med 3 e20.

    • Search Google Scholar
    • Export Citation
  • 65. F.O. Vannberg S.J. Chapman C.C. Khor K. Tosh S. Floyd D. Jackson-Sillah A. Crampin L. Sichali B. Bah P. Gustafson P. Aaby K.P. McAdam O. Bah-Sow C. Lienhardt G. Sirugo P. Fine A.V. Hill 2008 CD209 genetic polymorphism and tuberculosis disease PLoS One 3 e1388.

    • Search Google Scholar
    • Export Citation
  • 66. M. Ben-Ali L.B. Barreiro A. Chabbou R. Haltiti E. Braham O. Neyrolles K. Dellagi B. Gicquel L. Quintana-Murci M.R. Barbouche 2007 Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients Hum Immunol 68 908912.

    • Search Google Scholar
    • Export Citation
  • 67. L.M. Gomez J.M. Anaya E. Sierra-Filardi J. Cadena A. Corbi J. Martin 2006 Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis Hum Immunol 67 808811.

    • Search Google Scholar
    • Export Citation
  • 68. S. Ehlers 2009 DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison Eur J Cell Biol 89 95101.

    • Search Google Scholar
    • Export Citation
  • 69. M. Schaefer N. Reiling C. Fessler J. Stephani I. Taniuchi F. Hatam A.O. Yildirim H. Fehrenbach K. Walter J. Ruland H. Wagner S. Ehlers T. Sparwasser 2008 Decreased pathology and prolonged survival of human DC-SIGN transgenic mice during mycobacterial infection J Immunol 180 68366845.

    • Search Google Scholar
    • Export Citation
  • 70. C.G. Park K. Takahara E. Umemoto Y. Yashima K. Matsubara Y. Matsuda B.E. Clausen K. Inaba R.M. Steinman 2001 Five mouse homologues of the human dendritic cell C-type lectin, DCSIGN Int Immunol 13 12831290.

    • Search Google Scholar
    • Export Citation
  • 71. A.S. Powlesland E.M. Ward S.K. Sadhu Y. Guo M.E. Taylor K. Drickamer 2006 Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins J Biol Chem 281 2044020449.

    • Search Google Scholar
    • Export Citation
  • 72. A. Tanne O. Neyrolles 2010 C-type lectins in immune defense against pathogens: the murine DC-SIGN homologue SIGNR3 confers early protection against Mycobacterium tuberculosis infection Virulence 1 285290.

    • Search Google Scholar
    • Export Citation
  • 73. C. Galustian C.G. Park W. Chai M. Kiso S.A. Bruening Y.S. Kang R.M. Steinman T. Feizi 2004 High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin Int Immunol 16 853866.

    • Search Google Scholar
    • Export Citation
  • 74. K. Nagaoka K. Takahara K. Minamino T. Takeda Y. Yoshida K. Inaba 2010 Expression of C-type lectin, SIGNR3, on subsets of dendritic cells, macrophages, and monocytes J Leukoc Biol 88 913924.

    • Search Google Scholar
    • Export Citation
  • 75. B.A. Kruskal K. Sastry A.B. Warner C.E. Mathieu R.A. Ezekowitz 1992 Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from the mannose receptor J Exp Med 176 16731680.

    • Search Google Scholar
    • Export Citation
  • 76. B.L. Largent K.M. Walton C.A. Hoppe Y.C. Lee R.L. Schnaar 1984 Carbohydrate-specific adhesion of alveolar macrophages to mannose-derivatized surfaces J Biol Chem 259 17641769.

    • Search Google Scholar
    • Export Citation
  • 77. N.P. Mullin P.G. Hitchen M.E. Taylor 1997 Mechanism of Ca2+ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor J Biol Chem 272 56685681.

    • Search Google Scholar
    • Export Citation
  • 78. M.E. Taylor K. Bezouska K. Drickamer 1992 Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor J Biol Chem 267 17191726.

    • Search Google Scholar
    • Export Citation
  • 79. E.J. McKenzie P.R. Taylor R.J. Stillion A.D. Lucas J. Harris S. Gordon L. Martinez-Pomares 2007 Mannose receptor expression and function define a new population of murine dendritic cells J Immunol 178 49754983.

    • Search Google Scholar
    • Export Citation
  • 80. S.J. Lee S. Evers D. Roeder A.F. Parlow J. Risteli L. Risteli Y.C. Lee T. Feizi H. Langen M.C. Nussenzweig 2002 Mannose receptor-mediated regulation of serum glycoprotein homeostasis Science 295 18981901.

    • Search Google Scholar
    • Export Citation
  • 81. G.D. Brown P.R. Taylor D.M. Reid J.A. Willment D.L. Williams L. Martinez-Pomares S.Y. Wong S. Gordon 2002 Dectin-1 is a major beta-glucan receptor on macrophages J Exp Med 196 407412.

    • Search Google Scholar
    • Export Citation
  • 82. L. East C.M. Isacke 2002 The mannose receptor family Biochim Biophys Acta 1572 364386.

  • 83. S. Zamze L. Martinez-Pomares H. Jones P.R. Taylor R.J. Stillion S. Gordon S.Y. Wong 2002 Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor J Biol Chem 277 4161341623.

    • Search Google Scholar
    • Export Citation
  • 84. O.E. Akilov R.E. Kasuboski C.R. Carter M.A. McDowell 2007 The role of mannose receptor during experimental leishmaniasis J Leukoc Biol 81 11881196.

    • Search Google Scholar
    • Export Citation
  • 85. S.J. Lee N.Y. Zheng M. Clavijo M.C. Nussenzweig 2003 Normal host defense during systemic candidiasis in mannose receptor-deficient mice Infect Immun 71 437445.

    • Search Google Scholar
    • Export Citation
  • 86. S.D. Swain S.J. Lee M.C. Nussenzweig A.G. Harmsen 2003 Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo Infect Immun 71 62136221.

    • Search Google Scholar
    • Export Citation
  • 87. M.V. Rajaram M.N. Brooks J.D. Morris J.B. Torrelles A.K. Azad L.S. Schlesinger 2010 Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor gamma linking mannose receptor recognition to regulation of immune responses J Immunol 185 929942.

    • Search Google Scholar
    • Export Citation
  • 88. L.M. Graham G.D. Brown 2009 The Dectin-2 family of C-type lectins in immunity and homeostasis Cytokine 48 148155.

  • 89. K. Sato X.L. Yang T. Yudate J.S. Chung J. Wu K. Luby-Phelps R.P. Kimberly D. Underhill P.D. Cruz Jr. K. Ariizumi 2006 Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses J Biol Chem 281 3885438866.

    • Search Google Scholar
    • Export Citation
  • 90. N.A. Barrett A. Maekawa O.M. Rahman K.F. Austen Y. Kanaoka 2009 Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells J Immunol 182 11191128.

    • Search Google Scholar
    • Export Citation
  • 91. E.P. McGreal M. Rosas G.D. Brown S. Zamze S.Y. Wong S. Gordon L. Martinez-Pomares P.R. Taylor 2006 The carbohydraterecognition domain of Dectin-2 is a C-type lectin with specificity for highmannose Glycobiology 16 422430.

    • Search Google Scholar
    • Export Citation
  • 92. S. Yamasaki E. Ishikawa M. Sakuma H. Hara K. Ogata T. Saito 2008 Mincle is an ITAM-coupled activating receptor that senses damaged cells Nat Immunol 9 11791188.

    • Search Google Scholar
    • Export Citation
  • 93. H. Schoenen B. Bodendorfer K. Hitchens S. Manzanero K. Werninghaus F. Nimmerjahn E.M. Agger S. Stenger P. Andersen J. Ruland G.D. Brown C. Wells R. Lang 2010 Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate J Immunol 184 27562760.

    • Search Google Scholar
    • Export Citation
  • 94. R.L. Hunter M.R. Olsen C. Jagannath J.K. Actor 2006 Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease Ann Clin Lab Sci 36 371386.

    • Search Google Scholar
    • Export Citation
  • 95. G.D. Brown 2006 Dectin-1: a signalling non-TLR pattern-recognition receptor Nat Rev Immunol 6 3343.

  • 96. Lee HM , Yuk JM, Shin DM, Jo EK: Dectin-1 is Inducible and Plays an Essential Role for My cobacteria-Induced Innate Immune Responses in Airway Epithelial Cells. J Clin Immunol, (2009).

    • Search Google Scholar
    • Export Citation
  • 97. D.M. Shin C.S. Yang J.M. Yuk J.Y. Lee K.H. Kim S.J. Shin K. Takahara S.J. Lee E.K. Jo 2008 Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1 Cell Microbiol 10 16081621.

    • Search Google Scholar
    • Export Citation
  • 98. Marakalala MJ , Graham LM, Brown GD: The role of Syk/CARD9-coupled C-type lectin receptors in immunity to Mycobacterium tuberculosis infections. Clin Dev Immunol 2010, 567571 (2011).

    • Search Google Scholar
    • Export Citation
  • 99. M.A. Arnaout 1990 Structure and function of the leukocyte adhesion molecules CD11/CD18 Blood 75 10371050.

  • 100. R.A. Newton M. Thiel N. Hogg 1997 Signaling mechanisms and the activation of leukocyte integrins J Leukoc Biol 61 422426.

  • 101. M.A. Velasco-Velazquez D. Barrera A. Gonzalez-Arenas C. Rosales J. Agramonte-Hevia 2003 Macrophage-Mycobacterium tuberculosis interactions: role of complement receptor 3 Microb Pathog 35 125131.

    • Search Google Scholar
    • Export Citation
  • 102. B.P. Thornton V. Vetvicka M. Pitman R.C. Goldman G.D. Ross 1996 Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18) J Immunol 156 12351246.

    • Search Google Scholar
    • Export Citation
  • 103. L.M. Thorson D. Doxsee M.G. Scott P. Wheeler R.W. Stokes 2001 Effect of mycobacterial phospholipids on interaction of Mycobacterium tuberculosis with macrophages Infect Immun 69 21722179.

    • Search Google Scholar
    • Export Citation
  • 104. H. Tada S. Aiba K. Shibata T. Ohteki H. Takada 2005 Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells Infect Immun 73 79677976.

    • Search Google Scholar
    • Export Citation
  • 105. C. Villeneuve M. Gilleron I. Maridonneau-Parini M. Daffe C. Astarie-Dequeker G. Etienne 2005 Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process J Lipid Res 46 475483.

    • Search Google Scholar
    • Export Citation
  • 106. M.D. Melo I.R. Catchpole G. Haggar R.W. Stokes 2000 Utilization of CD11b knockout mice to characterize the role of complement receptor 3 (CR3, CD11b/CD18) in the growth of Mycobacterium tuberculosis in macrophages Cell Immunol 205 1323.

    • Search Google Scholar
    • Export Citation
  • 107. C. Hu T. Mayadas-Norton K. Tanaka J. Chan P. Salgame 2000 Mycobacterium tuberculosis infection in complement receptor 3-deficient mice J Immunol 165 25962602.

    • Search Google Scholar
    • Export Citation
  • 108. Y. Kuroki M. Takahashi C. Nishitani 2007 Pulmonary collectins in innate immunity of the lung CellMicrobiol 9 18711879.

  • 109. L. Hall-Stoodley G. Watts J.E. Crowther A. Balagopal J.B. Torrelles J. Robison-Cox R.F. Bargatze A.G. Harmsen E.C. Crouch L.S. Schlesinger 2006 Mycobacterium tuberculosis binding to human surfactant proteins A and D, fibronectin, and small airway epithelial cells under shear conditions Infect Immun 74 35873596.

    • Search Google Scholar
    • Export Citation
  • 110. J. Perez-Gil 2008 Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions Biochim Biophys Acta 1778 16761695.

    • Search Google Scholar
    • Export Citation
  • 111. P.S. Kingma J.A. Whitsett 2006 In defense of the lung: surfactant protein A and surfactant protein D Curr Opin Pharmacol 6 277283.

    • Search Google Scholar
    • Export Citation
  • 112. G.L. Sorensen S. Husby U. Holmskov 2007 Surfactant protein A and surfactant protein D variation in pulmonary disease Immunobiology 212 381416.

    • Search Google Scholar
    • Export Citation
  • 113. J.R. Wright 2005 Immunoregulatory functions of surfactant proteins Nat Rev Immunol 5 5868.

  • 114. P.S. Kingma L. Zhang M. Ikegami K. Hartshorn F.X. McCormack J.A. Whitsett 2006 Correction of pulmonary abnormalities in Sftpd-/-mice requires the collagenous domain of surfactant protein D J Biol Chem 281 2449624505.

    • Search Google Scholar
    • Export Citation
  • 115. A.A. Beharka C.D. Gaynor B.K. Kang D.R. Voelker F.X. McCormack L.S. Schlesinger 2002 Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages J Immunol 169 35653573.

    • Search Google Scholar
    • Export Citation
  • 116. J.F. Downing R. Pasula J.R. Wright H.L. Twigg 3rd W.J. Martin 2nd 1995 Surfactant protein a promotes attachment ofMycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus Proc NatlAcad Sci U S A 92 48484852.

    • Search Google Scholar
    • Export Citation
  • 117. J.S. Ferguson J.L. Martin A.K. Azad T.R. McCarthy P.B. Kang D.R. Voelker E.C. Crouch L.S. Schlesinger 2006 Surfactant protein D increases fusion of Mycobacterium tuberculosis-containing phagosomes with lysosomes in human macrophages Infect Immun 74 70057009.

    • Search Google Scholar
    • Export Citation
  • 118. J.S. Ferguson D.R. Voelker F.X. McCormack L.S. Schlesinger 1999 Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages J Immunol 163 312321.

    • Search Google Scholar
    • Export Citation
  • 119. C.D. Gaynor F.X. McCormack D.R. Voelker S.E. McGowan L.S. Schlesinger 1995 Pulmonary surfactant proteinA mediates enhanced phagocytosis ofMycobacterium tuberculosis by a direct interaction with human macrophages J Immunol 155 53435351.

    • Search Google Scholar
    • Export Citation
  • 120. J.A. Gold Y. Hoshino N. Tanaka W.N. Rom B. Raju R. Condos M.D. Weiden 2004 Surfactant protein A modulates the inflammatory response in macrophages during tuberculosis Infect Immun 72 645650.

    • Search Google Scholar
    • Export Citation
  • 121. R. Pasula J.F. Downing J.R. Wright D.L. Kachel T.E. Davis Jr. W.J. Martin 2nd 1997 Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages Am J Respir Cell Mol Biol 17 209217.

    • Search Google Scholar
    • Export Citation
  • 122. L.F. Weikert J.P. Lopez R. Abdolrasulnia Z.C. Chroneos V.L. Shepherd 2000 Surfactant protein A enhances mycobacterial killing by rat macrophages through a nitric oxide-dependent pathway Am J Physiol Lung Cell Mol Physiol 279 L216223.

    • Search Google Scholar
    • Export Citation
  • 123. S. Sidobre J. Nigou G. Puzo M. Riviere 2000 Lipoglycans are putative ligands for the human pulmonary surfactant proteinA attachment to mycobacteria. Critical role of the lipids for lectin-carbohydrate recognition J Biol Chem 275 24152422.

    • Search Google Scholar
    • Export Citation
  • 124. T.K. Carlson J.B. Torrelles K. Smith T. Horlacher R. Castelli P.H. Seeberger E.C. Crouch L.S. Schlesinger 2009 Critical role of amino acid position 343 of surfactant protein-D in the selective binding of glycolipids from Mycobacterium tuberculosis Glycobiology 19 14731484.

    • Search Google Scholar
    • Export Citation
  • 125. A. Ragas L. Roussel G. Puzo M. Riviere 2007 TheMycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A J Biol Chem 282 51335142.

    • Search Google Scholar
    • Export Citation
  • 126. K. Kuronuma H. Sano K. Kato K. Kudo N. Hyakushima S. Yokota H. Takahashi N. Fujii H. Suzuki T. Kodama S. Abe Y. Kuroki 2004 Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A J Biol Chem 279 2142121430.

    • Search Google Scholar
    • Export Citation
  • 127. M. Gil F.X. McCormack A.M. Levine 2009 Surfactant protein A modulates cell surface expression of CR3 on alveolar macrophages and enhances CR3-mediated phagocytosis J Biol Chem 284 74957504.

    • Search Google Scholar
    • Export Citation
  • 128. Whitsett JA , Wert SE, Weaver TE: Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61, 105119.

    • Search Google Scholar
    • Export Citation
  • 129. M. Gonzalez-Juarrero J.M. Hattle A. Izzo A.P. Junqueira-Kipnis T.S. Shim B.C. Trapnell A.M. Cooper I.M. Orme 2005 Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to controlMycobacterium tuberculosis infection J Leukoc Biol 77 914922.

    • Search Google Scholar
    • Export Citation
  • 130. S. Malik C.M. Greenwood T. Eguale A. Kifle J. Beyene A. Habte A. Tadesse H. Gebrexabher S. Britton E. Schurr 2006 Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia Hum Genet 118 752759.

    • Search Google Scholar
    • Export Citation
  • 131. T. Madan S. Saxena K.J. Murthy K. Muralidhar P.U. Sarma 2002 Association of polymorphisms in the collagen region of human SP-A1 and SP-A2 genes with pulmonary tuberculosis in Indian population Clin Chem LabMed 40 10021008.

    • Search Google Scholar
    • Export Citation
  • 132. W.K. Ip K. Takahashi R.A. Ezekowitz L.M. Stuart 2009 Mannosebinding lectin and innate immunity Immunol Rev 230 921.

  • 133. M. Nonaka B.Y. Ma M. Ohtani A. Yamamoto M. Murata K. Totani Y. Ito K. Miwa W. Nogami N. Kawasaki T. Kawasaki 2007 Subcellular localization and physiological significance of intracellular mannan-binding protein J Biol Chem 282 1790817920.

    • Search Google Scholar
    • Export Citation
  • 134. J.H. Lu S. Thiel H. Wiedemann R. Timpl K.B. Reid 1990 Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q J Immunol 144 22872294.

    • Search Google Scholar
    • Export Citation
  • 135. Y. Yokota T. Arai T. Kawasaki 1995 Oligomeric structures required for complement activation of serum mannan-binding proteins J Biochem 117 414419.

    • Search Google Scholar
    • Export Citation
  • 136. K. Drickamer 1992 Engineering galactose-binding activity into a C-typemannose-binding protein Nature 360 183186.

  • 137. W.I. Weis K. Drickamer W.A. Hendrickson 1992 Structure of a Ctype mannose-binding protein complexed with an oligosaccharide Nature 360 127134.

    • Search Google Scholar
    • Export Citation
  • 138. K. Takahashi 2008 Lessons learned from murine models of mannose-binding lectin deficiency Biochem Soc Trans 36 14871490.

  • 139. P. Garred M. Harboe T. Oettinger C. Koch A. Svejgaard 1994 Dual role of mannan-binding protein in infections: another case of heterosis? Eur J Immunogenet 21 125131.

    • Search Google Scholar
    • Export Citation
  • 140. V.Y. Polotsky J.T. Belisle K. Mikusova R.A. Ezekowitz K.A. Joiner 1997 Interaction of human mannose-binding protein withMycobacterium avium J Infect Dis 175 11591168.

    • Search Google Scholar
    • Export Citation
  • 141. R. Bellamy 1998 Genetics and pulmonary medicine. 3. Genetic susceptibility to tuberculosis in human populations Thorax 53 588593.

    • Search Google Scholar
    • Export Citation
  • 142. R. Bellamy C. Ruwende K.P. McAdam M. Thursz M. Sumiya J. Summerfield S.C. Gilbert T. Corrah D. Kwiatkowski H.C. Whittle A.V. Hill 1998 Mannose binding protein deficiency is not associated with malaria, hepatitis B carriage nor tuberculosis in Africans QJM 91 1318.

    • Search Google Scholar
    • Export Citation
  • 143. R. Capparelli M. Iannaccone D. Palumbo C. Medaglia E. Moscariello A. Russo D. Iannelli 2009 Role played by human mannose-binding lectin polymorphisms in pulmonary tuberculosis J Infect Dis 199 666672.

    • Search Google Scholar
    • Export Citation
  • 144. P. Selvaraj P.R. Narayanan A.M. Reetha 1999 Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India Tuber Lung Dis 79 221227.

    • Search Google Scholar
    • Export Citation
  • 145. P. Verdu L.B. Barreiro E. Patin A. Gessain O. Cassar J.R. Kidd K.K. Kidd D.M. Behar A. Froment E. Heyer L. Sica J.L. Casanova L. Abel L. Quintana-Murci 2006 Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles Hum Mol Genet 15 26502658.

    • Search Google Scholar
    • Export Citation
  • 146. L. Shi K. Takahashi J. Dundee S. Shahroor-Karni S. Thiel J.C. Jensenius F. Gad M.R. Hamblin K.N. Sastry R.A. Ezekowitz 2004 Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus J Exp Med 199 13791390.

    • Search Google Scholar
    • Export Citation
  • 147. W.K. Ip K. Takahashi K.J. Moore L.M. Stuart R.A. Ezekowitz 2008 Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome J Exp Med 205 169181.

    • Search Google Scholar
    • Export Citation
  • 148. Saiga H , Shimada Y, Takeda K: Innate immune effectors in mycobacterial infection. Clin Dev Immunol 2011, Article ID 347594 (2011).

  • 149. G. Hajishengallis J.D. Lambris 2011 Microbial manipulation of receptor crosstalk in innate immunity Nat Rev Immunol 11 187200.

  • 150. M. Natarajan K.M. Lin R.C. Hsueh P.C. Sternweis R. Ranganathan 2006 A global analysis of cross-talk in a mammalian cellular signalling network Nat Cell Biol 8 571580.

    • Search Google Scholar
    • Export Citation
  • 151. Goodridge HS , Underhill DM: Fungal Recognition by TLR2 and Dectin-1. Handb Exp Pharmacol, 87–109 (2008).

  • 152. S. Ogawa J. Lozach C. Benner G. Pascual R.K. Tangirala S. Westin A. Hoffmann S. Subramaniam M. David M.G. Rosenfeld C.K. Glass 2005 Molecular determinants of crosstalk between nuclear receptors and toll-like receptors Cell 122 707721.

    • Search Google Scholar
    • Export Citation
  • 153. D. Lukashev A. Ohta S. Apasov J.F. Chen M. Sitkovsky 2004 Cutting edge: Physiologic attenuation of proinflammatory transcription by the Gs protein-coupledA2A adenosine receptor in vivo J Immunol 173 2124.

    • Search Google Scholar
    • Export Citation
  • 154. M.J. Marakalala R. Guler L. Matika G. Murray M. Jacobs F. Brombacher A.G. Rothfuchs A. Sher G.D. Brown 2010 The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice Microbes Infect 13 198201.

    • Search Google Scholar
    • Export Citation
  • 155. A. Dorhoi C. Desel V. Yeremeev L. Pradl V. Brinkmann H.J. Mollenkopf K. Hanke O. Gross J. Ruland S.H. Kaufmann 2010 The adaptor molecule CARD9 is essential for tuberculosis control J Exp Med 207 777792.

    • Search Google Scholar
    • Export Citation
  • 156. Mascanfroni ID , Cerliani JP, Dergan-Dylon S, Croci DO, Ilarregui JM, Rabinovich GA: Endogenous lectins shape the function of dendritic cells and tailor adaptive immunity: Mechanisms and biomedical applications. Int Immunopharmacol, (2011).

    • Search Google Scholar
    • Export Citation
  • 157. D.M. Rennick M.M. Fort N.J. Davidson 1997 Studies with IL-10−/− mice: an overview J Leukoc Biol 61 389396.

  • 158. S.Z. Sheikh S.E. Plevy 2010 The role of the macrophage in sentinel responses in intestinal immunity Curr Opin Gastroenterol 26 578582.

    • Search Google Scholar
    • Export Citation
  • 159. Y.K. Lee S.K. Mazmanian 2011 Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330 17681773.

    • Search Google Scholar
    • Export Citation
  • 160. N. Cerf-Bensussan V. Gaboriau-Routhiau 2010 The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 10 735744.

    • Search Google Scholar
    • Export Citation
  • 161. N. Dulphy J.L. Herrmann J. Nigou D. Rea N. Boissel G. Puzo D. Charron P.H. Lagrange A. Toubert 2007 Intermediate maturation of Mycobacterium tuberculosis LAM-activated human dendritic cells Cell Microbiol 9 14121425.

    • Search Google Scholar
    • Export Citation
  • 162. M. Foti F. Granucci P. Ricciardi-Castagnoli 2004 A central role for tissue-resident dendritic cells in innate responses Trends Immunol 25 650654.

    • Search Google Scholar
    • Export Citation
  • 163. M.E. Remoli E. Giacomini E. Petruccioli V. Gafa M. Severa M.C. Gagliardi E. Iona R. Pine R. Nisini E.M. Coccia 2010 Bystander inhibition of dendritic cell differentiation by Mycobacterium tuberculosis-induced IL-10 Immunol Cell Biol 89 437446.

    • Search Google Scholar
    • Export Citation
  • 164. T. Schreiber S. Ehlers L. Heitmann A. Rausch J. Mages P.J. Murray R. Lang C. Holscher 2009 Autocrine IL-10 induces hallmarks of alternative activation inmacrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity J Immunol 183 13011312.

    • Search Google Scholar
    • Export Citation
  • 165. K.C. El Kasmi J.E. Qualls J.T. Pesce A.M. Smith R.W. Thompson M. Henao-Tamayo R.J. Basaraba T. Konig U. Schleicher M.S. Koo G. Kaplan K.A. Fitzgerald E.I. Tuomanen I.M. Orme T.D. Kanneganti C. Bogdan T.A. Wynn P.J. Murray 2008 Tolllike receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens Nat Immunol 9 13991406.

    • Search Google Scholar
    • Export Citation
  • 166. P.T. Liu S. Stenger D.H. Tang R.L. Modlin 2007 Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin J Immunol 179 20602063.

    • Search Google Scholar
    • Export Citation
  • 167. B. Rivas-Santiago S.K. Schwander C. Sarabia G. Diamond M.E. Klein-Patel R. Hernandez-Pando J.J. Ellner E. Sada 2005 Human {beta}-defensin 2 is expressed and associated with Mycobacterium tuberculosis during infection of human alveolar epithelial cells Infect Immun 73 45054511.

    • Search Google Scholar
    • Export Citation
  • 168. A. Kumar J. Zhang F.S. Yu 2006 Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells Microbes Infect 8 380389.

    • Search Google Scholar
    • Export Citation
  • 169. S.A. Gomez C.L. Arguelles D. Guerrieri N.L. Tateosian N.O. Amiano R. Slimovich P.C. Maffia E. Abbate R.M. Musella V.E. Garcia H.E. Chuluyan 2009 Secretory leukocyte protease inhibitor: a secreted pattern recognition receptor for mycobacteria Am J Respir Crit Care Med 179 247253.

    • Search Google Scholar
    • Export Citation
  • 170. J. Nishimura H. Saiga S. Sato M. Okuyama H. Kayama H. Kuwata S. Matsumoto T. Nishida Y. Sawa S. Akira Y. Yoshikai M. Yamamoto K. Takeda 2008 Potent antimycobacterial activity of mouse secretory leukocyte protease inhibitor J Immunol 180 40324039.

    • Search Google Scholar
    • Export Citation
  • 171. A. Ding H. Yu J. Yang S. Shi S. Ehrt 2005 Induction ofmacrophagederived SLPI by Mycobacterium tuberculosis depends on TLR2 but not MyD88 Immunology 116 381389.

    • Search Google Scholar
    • Export Citation
  • 172. T.H. Flo K.D. Smith S. Sato D.J. Rodriguez M.A. Holmes R.K. Strong S. Akira A. Aderem 2004 Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron Nature 432 917921.

    • Search Google Scholar
    • Export Citation
  • 173. O. Halaas M. Steigedal M. Haug J.A. Awuh L. Ryan A. Brech S. Sato H. Husebye G.A. Cangelosi S. Akira R.K. Strong T. Espevik T.H. Flo 2010 Intracellular Mycobacterium avium intersect transferrin in the Rab11(+) recycling endocytic pathway and avoid lipocalin 2 trafficking to the lysosomal pathway J Infect Dis 201 783792.

    • Search Google Scholar
    • Export Citation
  • 174. H. Saiga J. Nishimura H. Kuwata M. Okuyama S. Matsumoto S. Sato M. Matsumoto S. Akira Y. Yoshikai K. Honda M. Yamamoto K. Takeda 2008 Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium J Immunol 181 85218527.

    • Search Google Scholar
    • Export Citation
  • 175. M.D. Howell N. Novak T. Bieber S. Pastore G. Girolomoni M. Boguniewicz J. Streib C. Wong R.L. Gallo D.Y. Leung 2005 Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis J Invest Dermatol 125 738745.

    • Search Google Scholar
    • Export Citation
  • 176. N. van der Wel D. Hava D. Houben D. Fluitsma M. van Zon J. Pierson M. Brenner P.J. Peters 2007 M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells Cell 129 12871298.

    • Search Google Scholar
    • Export Citation
  • 177. M.G. Gutierrez S.S. Master S.B. Singh G.A. Taylor M.I. Colombo V. Deretic 2004 Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages Cell 119 753766.

    • Search Google Scholar
    • Export Citation
  • 178. B. Levine N. Mizushima H.W. Virgin 2011 Autophagy in immunity and inflammation Nature 469 323335.

  • 179. E.K. Jo 2010 Innate immunity to mycobacteria: vitamin D, autophagy Cell Microbiol 12 10261035.

  • 180. C.G. Feng C.M. Collazo-Custodio M. Eckhaus S. Hieny Y. Belkaid K. Elkins D. Jankovic G.A. Taylor A. Sher 2004 Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia J Immunol 172 11631168.

    • Search Google Scholar
    • Export Citation
  • 181. Y. Xu C. Jagannath X.D. Liu A. Sharafkhaneh K.E. Kolodziejska N.T. Eissa 2007 Toll-like receptor 4 is a sensor for autophagy associated with innate immunity Immunity 27 135144.

    • Search Google Scholar
    • Export Citation
  • 182. V. Deretic 2008 Autophagy, an immunologic magic bullet: Mycobacterium tuberculosis phagosome maturation block and how to bypass it Future Microbiol 3 517524.

    • Search Google Scholar
    • Export Citation
  • 183. V. Deretic 2011 Autophagy in immunity and cell-autonomous defense against intracellular microbes Immunol Rev 240 92104.

  • 184. S. Pankiv T.H. Clausen T. Lamark A. Brech J.A. Bruun H. Outzen A. Overvatn G. Bjorkoy T. Johansen 2007 p62/SQSTM1 binds directly toAtg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy J Biol Chem 282 2413124145.

    • Search Google Scholar
    • Export Citation
  • 185. M. Ponpuak A.S. Davis E.A. Roberts M.A. Delgado C. Dinkins Z. Zhao H. Virgin G.B. Kyei T. Johansen I. Vergne V. Deretic 2010 Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties Immunity 32 329341.

    • Search Google Scholar
    • Export Citation
  • 186. S. Alonso K. Pethe D.G. Russell G.E. Purdy 2007 Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy Proc Natl Acad Sci U S A 104 60316036.

    • Search Google Scholar
    • Export Citation
  • 187. H.J. Kim S. Lee J.U. Jung 2010 When autophagy meets viruses: a double-edged sword with functions in defense and offense Semin Immunopathol 32 323341.

    • Search Google Scholar
    • Export Citation
  • 188. D. Kumar L. Nath M.A. Kamal A. Varshney A. Jain S. Singh K.V. Rao 2010 Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis Cell 140 731743.

    • Search Google Scholar
    • Export Citation
  • 189. J. Van Grol C. Subauste R.M. Andrade K. Fujinaga J. Nelson C.S. Subauste 2010 HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3 PLoS One 5 e11733.

    • Search Google Scholar
    • Export Citation
  • 190. H.J. Park S.J. Lee S.H. Kim J. Han J. Bae S.J. Kim C.G. Park T. Chun 2010 IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway Mol Immunol 48 720727.

    • Search Google Scholar
    • Export Citation
  • 191. P. Stahl P.H. Schlesinger E. Sigardson J.S. Rodman Y.C. Lee 1980 Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling Cell 19 207215.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Dunay, Ildiko Rita, Prof. Dr. Pharm, Dr. rer. nat., University of Magdeburg, Germany

Editor(s)-in-Chief: Heimesaat, Markus M., Prof. Dr. med., Charité - University Medicine Berlin, Germany

Editorial Board

  • Berit Bangoura, Dr. DVM. PhD,  University of Wyoming, USA
  • Stefan Bereswill, Prof. Dr. rer. nat., Charité - University Medicine Berlin, Germany
  • Dunja Bruder, Prof. Dr. rer. nat., University of Magdeburg, Germany
  • Jan Buer, Prof. Dr. med., University of Duisburg, Germany
  • Edit Buzas, Prof. Dr. med., Semmelweis University, Hungary
  • Renato Damatta, Prof. PhD, UENF, Brazil
  • Maria Deli, MD, PhD, DSc, Biological Research Center, HAS, Hungary
  • Olgica Djurković-Djaković, Prof. Phd, University of Belgrade, Serbia
  • Jean-Dennis Docquier, Prof. Dr. med., University of Siena, Italy
  • Zsuzsanna Fabry, Prof. Phd, University of Washington, USA
  • Ralf Ignatius, Prof. Dr. med., Charité - University Medicine Berlin, Germany
  • Achim Kaasch, Prof. Dr. med., Otto von Guericke University Magdeburg, Germany
  • Oliver Liesenfeld, Prof. Dr. med., Inflammatix, USA
  • Matyas Sandor, Prof. PhD, University of Wisconsin, USA
  • Ulrich Steinhoff, Prof. PhD, University of Marburg, Germany
  • Michal Toborek, Prof. PhD, University of Miami, USA
  • Susanne A. Wolf, PhD, MDC-Berlin, Germany

 

Dr. Dunay, Ildiko Rita
Magdeburg, Germany
E-mail: ildiko.dunay@med.ovgu.de

Indexing and Abstracting Services:

  • PubMed Central
  • Scopus
  • ESCI
  • CABI
  • CABELLS Journalytics

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.569
SJR Q rank Q3

2023  
Web of Science  
Total Cites
WoS
674
Journal Impact Factor 3.3
Rank by Impact Factor

Q2

Impact Factor
without
Journal Self Cites
3.1
5 Year
Impact Factor
3.2
Scimago  
Scimago
H-index
15
Scimago
Journal Rank
0.601
Scimago Quartile Score Microbiology (medical) (Q2)
Microbiology (Q3)
Immunology and Allergy (Q3)
Immunology (Q3)
Scopus  
Scopus
Cite Score
5.0
Scopus
CIte Score Rank
Microbiology (medical) Q2
Scopus
SNIP
0.832

 

European Journal of Microbiology and Immunology
Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 900 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

European Journal of Microbiology and Immunology
Language English
Size A4
Year of
Foundation
2011
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-509X (Print)
ISSN 2062-8633 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 56 0 0
Jan 2025 92 0 0
Feb 2025 114 0 0
Mar 2025 62 0 0
Apr 2025 58 0 0
May 2025 12 0 0
Jun 2025 0 0 0