View More View Less
  • 1 Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Bundeswehr Hospital, Hamburg, Germany
  • 2 Institute for Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
  • 3 Institute for Medical Microbiology, University of Ulm, Ulm, Germany
  • 4 Virology Division, United States Army Medical Research Institute of Infectious Disease, Fort Detrick, MD, 21702, USA
  • 5 Department of Pathology/Microbiology Division, Landstuhl Regional Medical Center (US Army), Landstuhl, Germany
  • 6 Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
  • 7 Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Bundeswehr Hospital Hamburg, Bernhard-Nocht St 74, D-20359, Hamburg, Germany
Restricted access

Abstract

Multi-drug-resistant strains of the Acinetobacter baumannii complex cause nosocomial infections. Rapid identification of Acinetobacter spp. is desirable in order to facilitate therapeutic or hygiene decisions. We evaluated a newly designed DNA probe that can be used under standard conditions in both a microwave oven and a slide chamber for the rapid identification of Acinetobacter spp. by fluorescence in situ hybridization (FISH). Using FISH, the new probe correctly identified 81/81 Acinetobacter spp. isolates and excluded 109/109 tested non-target organisms from agar culture. Furthermore, the new probe correctly identified 7/7 Acinetobacter spp. in 214 blood cultures determined to contain Gram-negative bacteria by Gram staining. Using either the microwave oven or slide chamber technique, the new probe was able to identify Acinetobacter spp. in 100% of the samples tested. FISH used in conjunction with our newly designed probe provides an easy, cheap, precise, and rapid method for the preliminary identification of Acinetobacter spp., especially in laboratories where more sophisticated methods like matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) are not available.

  • 1. P.G. Higgins H. Wisplinghoff O. Krut H. Seifert 2007 A PCR-based method to differentiate between Acinetobacter baumannii and Acinetobacter genomic species 13TU Clin Microbiol Infect 13 11991201.

    • Search Google Scholar
    • Export Citation
  • 2. S. Hammami R. Ghozzi S. Ben Redjeb 2008 Spread ofmultidrug resistant Acinetobacter baumannii in a teaching hospital Tunis Med 86 312315.

    • Search Google Scholar
    • Export Citation
  • 3. J.K. Mak M.J. Kim J. Pham J. Tapsall P.A. White 2009 Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii JAntimicrob Chemother 63 4754.

    • Search Google Scholar
    • Export Citation
  • 4. J.K. Valenzuela L. Thomas S.R. Partridge T. van der Reijden L. Dijkshoorn J. Iredell 2007 Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii J ClinMicrobiol 45 453460.

    • Search Google Scholar
    • Export Citation
  • 5. P.E. Fournier D. Vallenet V. Barbe S. Audic H. Ogata L. Poirel H. Richet C. Robert S. Mangenot C. Abergel P. Nordmann J. Weissenbach D. Raoult J.M. Claverie 2006 Comparative genomics of multidrug resistance in Acinetobacter baumannii PLoS Genet 2 6272.

    • Search Google Scholar
    • Export Citation
  • 6. L. Ferreira S. Vega F. Sánchez-Juanes M. González A. Herrero M.C. Muñiz J.M. González-Buitrago J.L. Muñoz 2010 Identifying bacteria using a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)mass spectrometer. Comparison with routine methods used in clinical microbiology laboratories Enferm Infecc Microbiol Clin 28 492497.

    • Search Google Scholar
    • Export Citation
  • 7. M. Vaneechoutte L. Dijkshoorn I. Tjernberg A. Elaichouni P. de Vos G. Claeys G. Verschraegen 1995 Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis J Clin Microbiol 33 1115.

    • Search Google Scholar
    • Export Citation
  • 8. M.R. Pingle K. Granger P. Feinberg R. Shatsky B. Sterling M. Rundell E. Spitzer D. Larone L. Golightly F. Barany 2007 Multiplexed identification of blood-borne bacterial pathogens by use of a novel 16S rRNA gene PCR-ligase detection reaction-capillary electrophoresis assay J Clin Microbiol 45 19271935.

    • Search Google Scholar
    • Export Citation
  • 9. T.J. Park S.M. Yoo K.C. Keum S.Y. Lee 2009 Microarray of DNA-protein complexes on poly-3-hydroxybutyrate surface for pathogen detection Anal Bioanal Chem 393 16391647.

    • Search Google Scholar
    • Export Citation
  • 10. M. Hogardt K. Trebesius A.M. Geiger R. Hornef J. Rosenecker J. Heesemann 2000 Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients J Clin Microbiol 38 818825.

    • Search Google Scholar
    • Export Citation
  • 11. V.A. Kempf K. Trebesius I.B. Autenrieth 2000 Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures J ClinMicrobiol 38 830838.

    • Search Google Scholar
    • Export Citation
  • 12. R.P. Peters M.A. van Agtmael A.M. Simoons-Smit S.A. Danner C.M. Vandenbroucke-Grauls P.H. Savelkoul 2006 Rapid identification of pathogens in blood cultures with a modified fluorescence in situ hybridization assay J Clin Microbiol 44 41864188.

    • Search Google Scholar
    • Export Citation
  • 13. N. Wellinghausen J. Köthe B. Wirths A. Sigge S. Poppert 2005 Superiority of molecular techniques for identification of gramnegative, oxidase-positive rods, including morphologically nontypical Pseudomonas aeruginosa, from patients with cystic fibrosis J ClinMicrobiol 43 40704075.

    • Search Google Scholar
    • Export Citation
  • 14. G. Jansen J.M. Mooibroek J. Idema H.J.M. Harmsen G.W. Welling J.E. Degener 2000 Rapid identification of bacteria in blood cultures by using fluorescently labeled oligonucleotide probes J ClinMicrobiol 38 814817.

    • Search Google Scholar
    • Export Citation
  • 15. S. Poppert A. Essig B. Stoehr A. Steingruber B. Wirths S. Juretschko U. Reischl N. Wellinghausen 2005 Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization J ClinMicrobiol 43 33903397.

    • Search Google Scholar
    • Export Citation
  • 16. S. Poppert M. Riecker A. Essig 2010 Rapid identification of Propionibacterium acnes from blood cultures by fluorescence in situ hybridization DiagnMicrobiol InfectDis 66 214216.

    • Search Google Scholar
    • Export Citation
  • 17. S. Poppert M. Riecker N. Wellinghausen H. Frickmann A. Essig 2010 Accelerated identification of Staphylococcus aureus from blood cultures by a modified fluorescence in situ hybridization procedure JMedMicrobiol 59 Pt1 6568.

    • Search Google Scholar
    • Export Citation
  • 18. E.H. Wong G. Subramaniam P. Navaratnam S.D. Sekaran 2007 Rapid detection of non-enterobacteriaceae directly from positive blood culture using fluorescent in situ hybridization Indian J MedMicrobiol 25 391394.

    • Search Google Scholar
    • Export Citation
  • 19. A.Y. Peleg Y. Tilahun M.J. Fiandaca E.M.C. D'Agata L. Venkataraman R.C. Moellering Jr G.M. Eliopoulos 2009 Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa J ClinMicrobiol 47 830832.

    • Search Google Scholar
    • Export Citation
  • 20. W. Ludwig O. Strunk R. Westram L. Richter H. Meier Yadhukumar A. Buchner T. Lai S. Steppi G. Jobb W. Förster I. Brettske S. Gerber A.W. Ginhart O. Gross S. Grumann S. Hermann R. Jost A. König T. Liss R. Lüssmann M. May B. Nonhoff B. Reichel R. Strehlow A. Stamatakis N. Stuckmann A. Vilbig M. Lenke T. Ludwig A. Bode K.H. Schleifer 2004 ARB: a software environment for sequence data Nucleic Acids Res 32 13631371.

    • Search Google Scholar
    • Export Citation
  • 21. Y. Kumar R. Westram P. Kipfer H. Meier W. Ludwig 2006 Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package BMC Bioinformatics 7 240.

    • Search Google Scholar
    • Export Citation
  • 22. R.I. Amann B.J. Binder R.J. Olson S.W. Chisholm R. Devereux D.A. Stahl 1990 Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations Appl Environ Microbiol 56 19191925.

    • Search Google Scholar
    • Export Citation
  • 23. A. Loy R. Arnold P. Tischler T. Rattei M. Wagner M. Horn 2008 probeCheck — a central resource for evaluating oligonucleotide probe coverage and specificity Environ Microbiol 10 28942898.

    • Search Google Scholar
    • Export Citation
  • 24. P.G. Higgins C. Dammhayn M. Hackel H. Seifert 2010 Global spread of carbapenem-resistant Acinetobacter baumannii J Antimicrob Chemother 65 233238.

    • Search Google Scholar
    • Export Citation
  • 25. H. Frickmann S. Crusius U. Walter A. Podbielski 2010 Management of an outbreak with cases of nosocomial pneumonia caused by a novel multi-drug-resistant Acinetobacter baumannii clone Pneumologie 64 18.

    • Search Google Scholar
    • Export Citation
  • 26. N. Wellinghausen l. Barte A. Essig S. Poppert 2007 Rapid identification of clinically relevant Enterococcus species by fluorescence in situ hybridization J Clin Microbiol 45 34243426.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2020 5 2 0
Aug 2020 1 0 0
Sep 2020 3 0 0
Oct 2020 2 0 0
Nov 2020 15 0 0
Dec 2020 1 0 0
Jan 2021 0 0 0