The role of complement and complement-fixing IgG isotypes at mucosal surfaces is ill defined. Previous data have demonstrated that survival of an infection with the attaching and effacing pathogen Citrobacter rodentium requires production of systemic and CD4+ T cell-dependent IgG. We have found that both complement and complement-fixing IgG isotypes are needed to survive a C. rodentium infection. Our results indicate that both IgG and complement C3b enter the gut lumen and bind epithelially adherent, and fecally shed C. rodentium. Furthermore, C3-deficient mice demonstrate a profound survival defect, though means to replenish C3 in systemic or mucosal sites restores the protective capacity of complement in the host. Our data provide evidence that both IgG and complement interact constructively on both sides of the epithelium to fight colonizing mucosal infections.
1. A.D. Wales M.J. Woodward G.R. Pearson 2005 Attaching-effacing bacteria in animals J Comp Pathol 132 1–26.
2. D.B. Schauer S. Falkow 1993 Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasia Infect Immun 61 2486–2492.
3. S.A. Luperchio D.B. Schauer 2001 Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia Microbes Infect 3 333–340.
4. R.E. Black S. Cousens H.L. Johnson et al.2010 Global, regional, and national causes of childmortality in 2008: a systematic analysis Lancet 375 1969–1987.
5. K.G. Campellone 2010 Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, Esp-FU and actin pedestal assembly FEBS J 277 2390–2402.
6. E.L. Hartland M. Batchelor R.M. Delahay et al.1999 Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells Mol Microbiol 32 151–158.
7. Brady MJ , Campellone KG, Ghildiyal M et al.: Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol 9, 2242–2253.
8. J. Cleary L.C. Lai R.K. Shaw et al.2004 Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin Microbiology 150 527–538.
9. Mundy R , MacDonald TT, Dougan G et al.: Citrobacter rodentium of mice and man. Cell Microbiol 7, 1697–1706.
10. C.P. Simmons S. Clare M. Ghaem-Maghami et al.2003 Central role for B lymphocytes and CD4+ T cells in immunity to infection by the attaching and effacing pathogen Citrobacter rodentium Infect Immun 71 5077–5086.
11. N.S. Goncalves M. Ghaem-Maghami G. Monteleone et al.2001 Critical role for tumor necrosis factor alpha in controlling the number of lumenal pathogenic bacteria and immunopathology in infectious colitis Infect Immun 69 6651–6659.
12. S.M. Dann M.E. Spehlmann D.C. Hammond et al.2008 IL-6-dependentmucosal protection prevents establishment of amicrobial niche for attaching/effacing lesion-forming enteric bacterial pathogens J Immunol 180 6816–6826.
13. H. Shiomi A. Masuda S. Nishiumi et al.2010 Gamma interferon produced by antigen-specific CD4+ T cells regulates the mucosal immune responses to Citrobacter rodentium infection Infect Immun 78 2653–2666.
14. C. Maaser M.P. Housley M. Iimura et al.2004 Clearance of Citrobacter rodentium requires B cells but not secretory immunoglobulin A (IgA) or IgM antibodies Infect Immun 72 3315–3324.
15. Bry L , Brigl M, Brenner MB: CD4+-T-cell effector functions and costimulatory requirements essential for surviving mucosal infection with Citrobacter rodentium. Infect Immun 74, 673–681.
16. L. Bry M.B. Brenner 2004 Critical role of T cell-dependent serum antibody, but not the gut-associated lymphoid tissue, for surviving acutemucosal infectionwith Citrobacter rodentium, an attaching and effacing pathogen J Immunol 172 433–441.
17. G.F. Sonnenberg L.A. Monticelli M.M. Elloso et al.2011 CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut Immunity 34 122–134.
18. A. Masuda M. Yoshida H. Shiomi et al.2008 Fcgamma receptor regulation of Citrobacter rodentium infection Infect Immun 76 1728–1737.
19. M. Yoshida S.M. Claypool J.S. Wagner et al.2004 Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells Immunity 20 769–783.
20. D.C. Roopenian G.J. Christianson T.J. Sproule et al.2003 TheMHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs J Immunol 170 3528–3533.
21. M. Yoshida K. Kobayashi T.T. Kuo et al.2006 Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria J Clin Invest 116 2142–2151.
22. M. Bruewer A. Luegering T. Kucharzik et al.2003 Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms J Immunol 171 6164–6172.
23. S.K. Kochi R.C. Johnson A.P. Dalmasso 1993 Facilitation of complement-dependent killing of the Lyme disease spirochete, Borrelia burgdorferi, by specific immunoglobulin G Fab antibody fragments Infect Immun 61 2532–2536.
24. R. Yuan R. Clynes J. Oh et al.1998 Antibody-mediated modulation of Cryptococcus neoformans infection is dependent on distinct Fc receptor functions and IgG subclasses J Exp Med 187 641–648.
25. S. Shapiro D.O. Beenhouwer M. Feldmesser et al.2002 Immunoglobulin G monoclonal antibodies to Cryptococcus neoformans protectmice deficient in complement component C3 Infect Immun 70 2598–2604.
26. H.M. Carvalho L.D. Teel J.F. Kokai-Kun et al.2005 Antibody against the carboxyl terminus of intimin alpha reduces enteropathogenic Escherichia coli adherence to tissue culture cells and subsequent induction of actin polymerization Infect Immun 73 2541–2546.
27. E.P. Molmenti T. Ziambaras D.H. Perlmutter 1993 Evidence for an acute phase response in human intestinal epithelial cells J Biol Chem 268 14116–14124.
28. J.H. Passwell G.F. Schreiner R.A. Wetsel et al.1990 Complement gene expression in hepatic and extrahepatic tissues of NZB and NZB x W (F1) mouse strains Immunology 71 290–294.
29. K. Uemura M. Saka T. Nakagawa et al.2002 L-MBP is expressed in epithelial cells of mouse small intestine J Immunol 169 6945–6950.
30. A. Andoh Y. Fujiyama H. Sakumoto et al.1998 Detection of complement C3 and factor B gene expression in normal colorectal mucosa, adenomas and carcinomas Clin Exp Immunol 111 477–483.
31. M.F. Bernet-Camard M.H. Coconnier S. Hudault et al.1996 Differential expression of complement proteins and regulatory decay accelerating factor in relation to differentiation of cultured human colon adenocarcinoma cell lines Gut 38 248–253.
32. K. Yasojima K.S. Kilgore R.A. Washington et al.1998 Complement gene expression by rabbit heart: upregulation by ischemia and reperfusion Circ Res 82 1224–1230.
33. A. Verschoor M.A. Brockman M. Gadjeva et al.2003 Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection J Immunol 171 5363–5371.
34. C. Mold B. Rodic-Polic T.W. Du Clos 2002 Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors J Immunol 168 6375–6381.
35. T. Diaz de Stahl J. Dahlstrom l. Carrol et al.2003 Arole for complement in feedback enhancement of antibody responses by IgG3 J Exp Med 197 1183–1190.
36. M.C. Carroll 2004 The complement systemin B cell regulation Mol Immunol 41 141–146.
37. J.E. Marsh C.K. Farmer S. Jurcevic et al.2001 The allogeneic T and B cell response is strongly dependent on complement components C3 and C4 Transplantation 72 1310–1318.
38. Ferreira PC , da Silva JB, Piazza RM et al.: Immunization of mice with Lactobacillus casei expressing a beta-intimin fragment reduces intestinal colonization by Citrobacter rodentium. Clin Vaccine Immunol [Epub ahead of print] (2011).
39. Carroll MC . Complement and humoral immunity. Vaccine 26Suppl 8, I28–I33.
40. M.K. Pangburn V.P. Ferreira C. Cortes 2008 Discrimination between host and pathogens by the complement system Vaccine 26 Suppl8 I15–I21.
41. S. Petrella D. Clermont I. Casin et al.2001 Novel class A beta-lactamase Sed-1 from Citrobacter sedlakii: genetic diversity of beta-lactamases within the Citrobacter genus Antimicrob Agents Chemother 45 2287–2298.
42. J.F. Sinclair A.D. O'Brien 2004 Intimin types alpha, beta, and gamma bind to nucleolinwith equivalent affinity but lower avidity than to the translocated intimin receptor J Biol Chem 279 33751–33758.