View More View Less
  • 1 Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
  • | 2 Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
  • | 3 Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, 1083, Budapest, Hungary
Restricted access

Abstract

Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.

  • 1. D. Mayrand D. Grenier 1989 Biological activities of outer membrane vesicles Can J Microbiol 6 607 613.

  • 2. Jones S : Stressed? Time to vesiculate. Nat Rev Microbiol, 86–87 (2007).

  • 3. L.M. Mashburn-Warren M. Whiteley 2006 Special delivery: vesicle trafficking in prokaryotes Mol Microbiol 4 839 846.

  • 4. M. Miyanishi K. Tada M. Koike Y. Uchiyama T. Kitamura et al.2007 Identification of Tim4 as a phosphatidylserine receptor Nature 7168 435 439.

    • Search Google Scholar
    • Export Citation
  • 5. G. Lemke C.V. Rothlin 2008 Immunobiology of the TAM receptors Nat Rev Immunol 5 327 336.

  • 6. D'Asti E , Garnier D, Lee TH, Montermini L, Meehan B et al.: Oncogenic extracellular vesicles in brain tumor progression. Front Physiol 294 (2012).

    • Search Google Scholar
    • Export Citation
  • 7. E. Cocucci G. Racchetti J. Meldolesi 2009 Shedding microvesicles: artefacts no more Trends Cell Biol 2 43 51.

  • 8. Nieuwland R , Sturk A: Why do cells release vesicles? Thromb Res, S 49–51 (2010).

  • 9. B. Gyorgy T.G. Szabo M. Pasztoi Z. Pal P. Misjak et al.2011 Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles Cell Mol Life Sci 16 2667 2688.

    • Search Google Scholar
    • Export Citation
  • 10. N. Chaput C. Thery 2011 Exosomes: immune properties and potential clinical implementations Semin Immunopathol 5 419 440.

  • 11. M. Ostrowski N.B. Carmo S. Krumeich I. Fanget G. Raposo et al.2010 Rab27a and Rab27b control different steps of the exosome secretion pathway Nat Cell Biol 1 19 30.

    • Search Google Scholar
    • Export Citation
  • 12. Théry C , Ostrowski M, Segura E: Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 581–593 (2009).

  • 13. B. Gyorgy K. Modos E. Pallinger K. Paloczi M. Pasztoi et al.2011 Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters Blood 4 e39 48.

    • Search Google Scholar
    • Export Citation
  • 14. Bobrie A , Colombo M, Krumeich S, Raposo G, Théry C: Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracellular Vesicles, 1 (2012).

    • Search Google Scholar
    • Export Citation
  • 15. Gould SJ , Raposo G: As we wait: coping with an imperfect nomenclature for extracellular vesicles. Journal of Extracellular Vesicles, 20389 (2013).

    • Search Google Scholar
    • Export Citation
  • 16. C. Lasser S.E. O'Neil L. Ekerljung K. Ekstrom M. Sjostrand et al.2011 RNA-containing exosomes in human nasal secretions Am J Rhinol Allergy 2 89 93.

    • Search Google Scholar
    • Export Citation
  • 17. Hooper C , Sainz-Fuertes R, Lynham S, Hye A, Killick R et al.: Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neurosci, 144 (2012).

    • Search Google Scholar
    • Export Citation
  • 18. E. van der Pol A.N. Boing P. Harrison A. Sturk R. Nieuwland 2012 Classification, functions, and clinical relevance of extracellular vesicles Pharmacol Rev 3 676 705.

    • Search Google Scholar
    • Export Citation
  • 19. N. Cloutier S. Tan L.H. Boudreau C. Cramb R. Subbaiah et al.2013 The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes EMBO Mol Med 2 235 249.

    • Search Google Scholar
    • Export Citation
  • 20. B.M. Coleman E. Hanssen V.A. Lawson A.F. Hill 2012 Prion-infected cells regulate the release of exosomes with distinct ultrastructural features FASEB J 10 4160 4173.

    • Search Google Scholar
    • Export Citation
  • 21. Tatischeff I , Larquet E, Falcón-Pérez JM, Turpin P-Y, Kruglik SG: Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. Journal of Extracellular Vesicles, 1 (2012).

    • Search Google Scholar
    • Export Citation
  • 22. S. Sharma H.I. Rasool V. Palanisamy C. Mathisen M. Schmidt et al.2010 Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy ACS Nano 4 1921 1926.

    • Search Google Scholar
    • Export Citation
  • 23. Liu X , Wang HW: Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method. J Vis Exp, 49 (2011).

    • Search Google Scholar
    • Export Citation
  • 24. B. Gyorgy T.G. Szabo L. Turiak M. Wright P. Herczeg et al.2012 Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases PLoS One 11 e49726.

    • Search Google Scholar
    • Export Citation
  • 25. Momen-Heravi F , Balaj L, Alian S, Tigges J, Toxavidis V et al.: Alternative methods for characterization of extracellular vesicles. Front Physiol, 354 (2012).

    • Search Google Scholar
    • Export Citation
  • 26. Gardiner C , Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL: Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. 19671 (2013).

    • Search Google Scholar
    • Export Citation
  • 27. de Vrij J , Maas SL, van Nispen M, Sena-Esteves M, Limpens RW et al.: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine (Lond), (2013).

    • Search Google Scholar
    • Export Citation
  • 28. G. Raposo W. Stoorvogel 2013 Extracellular vesicles: Exosomes, microvesicles, and friends J Cell Biol 4 373 383.

  • 29. H. Valadi K. Ekstrom A. Bossios M. Sjostrand J.J. Lee et al.2007 Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells Nat Cell Biol 6 654 659.

    • Search Google Scholar
    • Export Citation
  • 30. K. Al-Nedawi B. Meehan J. Micallef V. Lhotak L. May et al.2008 Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells Nat Cell Biol 5 619 624.

    • Search Google Scholar
    • Export Citation
  • 31. G.R. Dubyak 2012 P2X7 receptor regulation of non-classical secretion from immune effector cells Cell Microbiol 11 1697 1706.

  • 32. G. Raposo H.W. Nijman W. Stoorvogel R. Liejendekker C.V. Harding et al.1996 B lymphocytes secrete antigen-presenting vesicles J Exp Med 3 1161 1172.

    • Search Google Scholar
    • Export Citation
  • 33. Y. Xie L. Wang A. Freywald M. Qureshi Y. Chen et al.2013 A novel T cell-based vaccine capable of stimulating long-term functional CTL memory against B16 melanoma via CD40L signaling Cell Mol Immunol 1 72 77.

    • Search Google Scholar
    • Export Citation
  • 34. Ruiss R , Ohno S, Steer B, Zeidler R Adler H: Murine gammaherpesvirus 68 glycoprotein 150 does not contribute to latency amplification in vivo. Virol J, 107 (2012).

    • Search Google Scholar
    • Export Citation
  • 35. E. Pap E. Pallinger A. Falus A.A. Kiss A. Kittel et al.2008 T lymphocytes are targets for platelet- and trophoblast-derived microvesicles during pregnancy Placenta 9 826 832.

    • Search Google Scholar
    • Export Citation
  • 36. A.S. Leroyer A. Tedgui C.M. Boulanger 2008 Role of microparticles in atherothrombosis J Intern Med 5 528 537.

  • 37. M. Jayachandran R.D. Litwiller B.D. Lahr K.R. Bailey W.G. Owen et al.2011 Alterations in platelet function and cell-derived microvesicles in recently menopausal women: relationship to metabolic syndrome and atherogenic risk J Cardiovasc Transl Res 6 811 822.

    • Search Google Scholar
    • Export Citation
  • 38. A. Aharon T. Tamari B. Brenner 2008 Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells Thromb Haemost 5 878 885.

    • Search Google Scholar
    • Export Citation
  • 39. J.J. Briede J.W. Heemskerk H.C. Hemker T. Lindhout 1999 Heterogeneity in microparticle formation and exposure of anionic phospholipids at the plasma membrane of single adherent platelets Biochim Biophys Acta 1 163 172.

    • Search Google Scholar
    • Export Citation
  • 40. A. MacKenzie H.L. Wilson E. Kiss-Toth S.K. Dower R.A. North et al.2001 Rapid secretion of interleukin-1beta by microvesicle shedding Immunity 5 825 835.

    • Search Google Scholar
    • Export Citation
  • 41. E. Boilard P.A. Nigrovic K. Larabee G.F. Watts J.S. Coblyn et al.2010 Platelets amplify inflammation in arthritis via collagen-dependent microparticle production Science 5965 580 583.

    • Search Google Scholar
    • Export Citation
  • 42. J.H. Distler A. Jungel L.C. Huber C.A. Seemayer C.F. Reich 3rd et al.2005 The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles Proc Natl Acad Sci USA 8 2892 2897.

    • Search Google Scholar
    • Export Citation
  • 43. I. Giusti S. D'Ascenzo D. Millimaggi G. Taraboletti G. Carta et al.2008 Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles Neoplasia 5 481 488.

    • Search Google Scholar
    • Export Citation
  • 44. Pasztoi M , Nagy G, Geher P, Lakatos T, Toth K et al.: Gene expression and activity of cartilage degrading glycosidases in human rheumatoid arthritis and osteoarthritis synovial fibroblasts. Arthritis Res Ther 3, R68 (2009).

    • Search Google Scholar
    • Export Citation
  • 45. A.D. Bangham M.M. Standish N. Miller 1965 Cation permeability of phospholipid model membranes: effect of narcotics Nature 5017 1295 1297.

    • Search Google Scholar
    • Export Citation
  • 46. G. Gregoriadis B.E. Ryman 1972 Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases Eur J Biochem 3 485 491.

    • Search Google Scholar
    • Export Citation
  • 47. M.J. Ostro P.R. Cullis 1989 Use of liposomes as injectable-drug delivery systems Am J Hosp Pharm 8 1576 1587.

  • 48. A.J. O'Loughlin C.A. Woffindale M.J. Wood 2012 Exosomes and the emerging field of exosome-based gene therapy Curr Gene Ther 4 262 274.

    • Search Google Scholar
    • Export Citation
  • 49. E. Pap E. Pallinger A. Falus 2011 The role of membrane vesicles in tumorigenesis Crit Rev Oncol Hematol 3 213 223.

  • 50. Marleau AM , Chen CS, Joyce JA, Tullis RH: Exosome removal as a therapeutic adjuvant in cancer. J Transl Med, 134 (2012).

  • 51. Wurdinger T , Gatson NN, Balaj L, Kaur B, Breakefield XO et al.: Extracellular vesicles and their convergence with viral pathways. Adv Virol, 767694 (2012).

    • Search Google Scholar
    • Export Citation
  • 52. C.A. Maguire L. Balaj S. Sivaraman M.H. Crommentuijn M. Ericsson et al.2012 Microvesicle-associated AAV vector as a novel gene delivery system Mol Ther 5 960 971.

    • Search Google Scholar
    • Export Citation
  • 53. J. Berleman M. Auer 2013 The role of bacterial outer membrane vesicles for intra- and interspecies delivery Environ Microbiol 2 347 354.

    • Search Google Scholar
    • Export Citation
  • 54. Y. Tashiro H. Uchiyama N. Nomura 2012 Multifunctional membrane vesicles in Pseudomonas aeruginosa Environ Microbiol 6 1349 1362.

  • 55. P.A. Keyel M.E. Heid S.C. Watkins R.D. Salter 2012 Visualization of bacterial toxin induced responses using live cell fluorescence microscopy J Vis Exp 68 e4227.

    • Search Google Scholar
    • Export Citation
  • 56. Chernov VM , Chernova OA, Mouzykantov AA, Efimova IR, Shaymardanova GF et al.: Extracellular vesicles derived from Acholeplasma laidlawii PG8. ScientificWorldJournal, 1120–1130 (2011).

    • Search Google Scholar
    • Export Citation
  • 57. J.M. Silverman N.E. Reiner 2011 Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes Cell Microbiol 1 1 9.

    • Search Google Scholar
    • Export Citation
  • 58. C.M. Unal V. Schaar K. Riesbeck 2011 Bacterial outer membrane vesicles in disease and preventive medicine Semin Immunopathol 5 395 408.

    • Search Google Scholar
    • Export Citation
  • 59. C. Beauvillain M.O. Juste S. Dion J. Pierre I. Dimier-Poisson 2009 Exosomes are an effective vaccine against congenital toxoplasmosis in mice Vaccine 11 1750 1757.

    • Search Google Scholar
    • Export Citation
  • 60. M. Miksa R. Wu W. Dong H. Komura D. Amin et al.2009 Immature dendritic cell-derived exosomes rescue septic animals via milk fat globule epidermal growth factor-factor VIII [corrected] J Immunol 9 5983 5990.

    • Search Google Scholar
    • Export Citation
  • 61. M. Regente M. Pinedo M. Elizalde L. de la Canal 2012 Apoplastic exosome-like vesicles: a new way of protein secretion in plants? Plant Signal Behav 5 544 546.

    • Search Google Scholar
    • Export Citation
  • 62. D. Sun X. Zhuang X. Xiang Y. Liu S. Zhang et al.2010 A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes Mol Ther 9 1606 1614.

    • Search Google Scholar
    • Export Citation
  • 63. H. De La Pena J.A. Madrigal S. Rusakiewicz M. Bencsik G.W. Cave et al.2009 Artificial exosomes as tools for basic and clinical immunology J Immunol Methods 2 121 132.

    • Search Google Scholar
    • Export Citation
  • 64. E. Jubeli L. Moine J. Vergnaud-Gauduchon G. Barratt 2012 E-selectin as a target for drug delivery and molecular imaging J Control Release 2 194 206.

    • Search Google Scholar
    • Export Citation
The author instruction is available in PDF.
Please, download the file from HERE.
 

Senior editors

Editor(s)-in-Chief: Dunay, Ildiko Rita

Editor(s)-in-Chief: Heimesaat, Markus M.

Vice Editor(s)-in-Chief: Fuchs, Anja

Editorial Board

Chair of the Editorial Board:
Jeffrey S. Buguliskis (Thomas Jefferson University, USA)

  • Jörn Albring (University of Münster, Germany)
  • Stefan Bereswill (Charité - University Medicine Berlin, Germany)
  • Dunja Bruder (University of Megdeburg, Germany)
  • Jan Buer (University of Duisburg, Germany)
  • Jeff Buguliskis (Thomas Jefferson University, USA)
  • Edit Buzas (Semmelweis University, Hungary)
  • Charles Collyer (University of Sydney, Australia)
  • Renato Damatta (UENF, Brazil)
  • Ivelina Damjanova (Semmelweis University, Hungary)
  • Maria Deli (Biological Research Center, HAS, Hungary)
  • Olgica Djurković-Djaković (University of Belgrade, Serbia)
  • Jean-Dennis Docquier (University of Siena, Italy)
  • Anna Erdei (Eötvös Loránd University, Hungary)
  • Zsuzsanna Fabry (University of Washington, USA)
  • Beniam Ghebremedhin (Witten/Herdecke University, Germany)
  • Nancy Guillen (Institute Pasteur, France)
  • Georgina L. Hold (University of Aberdeen, United Kingdom)
  • Ralf Ignatius (Charité - University Medicine Berlin, Germany)
  • Zsuzsanna Izsvak (MDC-Berlin, Germany)
  • Achim Kaasch (University of Cologne, Germany)
  • Tamás Laskay (University of Lübeck, Germany)
  • Oliver Liesenfeld (Roche, USA)
  • Shreemanta Parida (Vaccine Grand Challenge Program, India)
  • Matyas Sandor (University of Wisconsin, USA)
  • Ulrich Steinhoff (University of Marburg, Germany)
  • Michal Toborek (University of Miami, USA)
  • Mary Jo Wick (University of Gothenburg, Sweden)
  • Susanne A. Wolf (MDC-Berlin, Germany)

 

Dr. Dunay, Ildiko Rita
Magdeburg, Germany
E-mail: ildikodunay@gmail.com

Indexing and Abstracting Services:

  • PubMed Central
  • Scopus
  • ESCI
  • CABI

 

2020  
CrossRef Documents 23
WoS Cites 708
Wos H-index 27
Days from submission to acceptance 219
Days from acceptance to publication 176
Acceptance Rate 70%

2019  
WoS
Cites
558
CrossRef
Documents
24
Acceptance
Rate
92%

 

European Journal of Microbiology and Immunology
Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 928 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Gold Open Access
Purchase per Title  

European Journal of Microbiology and Immunology
Language English
Size A4
Year of
Foundation
2011
Publication
Programme
2021 Volume 11
Volumes
per Year
1
Issues
per Year
4
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2062-509X (Print)
ISSN 2062-8633 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 3 0 0
Jun 2021 2 0 0
Jul 2021 1 0 0
Aug 2021 10 0 0
Sep 2021 13 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0