View More View Less
  • 1 Department of Biology, Institute of Microbiology, Friedrich Alexander University, Erlangen/Nuremberg, Staudtstr. 5, D-91058, Erlangen, Germany
  • 2 The Institute of Bacterial Infections and Zoonoses, Friedrich Loeffler Institute, Naumburger Str. 96a, D-07743, Jena, Germany
  • 3 Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
  • 4 Department of Veterinary Disease Biology, University Copenhagen, Stigbøjlen 4, 20, DK-1870, Frederiksberg C, Denmark
  • 5 Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
  • 6 Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, 1600 Clifton Road, Atlanta, GA, 30333, USA
Restricted access

Abstract

The serine protease HtrA of C. jejuni has been identified as a novel secreted virulence factor which opens cell-to-cell junctions by cleaving E-cadherin. Efficient C. jejuni transmigration across polarized human epithelial cells requires the intact flagellum and HtrA; however, the mechanism of HtrA secretion into the supernatant is unknown. Here we show that HtrA secretion is highly efficient and does not require its proteolytic activity because the protease-inactive S197A mutant is secreted like wild-type HtrA. In addition, the flagellar mutants ΔflaA/B, ΔfliI, ΔflgH, ΔflhA, ΔflhB, and ΔflgS were also able to secrete HtrA in high amounts, while they were strongly attenuated in secreting the well-known invasion antigen CiaB. We also tested several culture media and cell lines of different origin such as human, mouse, hamster, dog, and chicken for their ability to influence HtrA secretion. Interestingly, HtrA was effectively secreted in the presence of most but not all cell lines and media, albeit at different levels, but secretion was significantly higher when fetal calf serum (FCS) was added. These results demonstrate that HtrA secretion by Campylobacter proceeds independent of HtrA's protease activity, the flagellum and origin of cell lines, but can be strongly enhanced by molecular compound(s) present in FCS.

  • 1. World Health Organization: Global burden of disease (GBD) 2002 estimates. WHO 2004. Geneva, Switzerland. (http://www.who.int/topics/global_burden_of_disease/en/).

    • Search Google Scholar
    • Export Citation
  • 2. CR Friedman J Neimann HC Wegener RV Tauxe 2000 Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations I Nachamkin MJ Blaser Campylobacter ASM Press Washington, DC 121 138.

    • Search Google Scholar
    • Export Citation
  • 3. KT Young LM Davis VJ DiRita 2007 Campylobacter jejuni: molecular biology and pathogenesis Nat Rev Microbiol 5 665 679.

  • 4. I Nachamkin CM Szymanski MJ Blaser 2008 Campylobacter ASM Press Washington, DC.

  • 5. OA Oyarzabal S Backert 2011 Microbial Food Safety Springer New York.

  • 6. MC Peterson 1994 Rheumatic manifestations of Campylobacter jejuni and C. fetus infections in adults Scand J Rheumatol 23 167 170.

  • 7. N Yuki M Koga 2006 Bacterial infections in Guillain-Barre and Fisher syndromes Curr Opin Neurol 19 451 457.

  • 8. T Ó Cróinín S Backert 2012 Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol 2 25.

    • Search Google Scholar
    • Export Citation
  • 9. CM Szymanski M King M Haardt GD Armstrong 1995 Campylobacter jejuni motility and invasion of Caco-2 cells Infect Immunol 63 4295 4300.

    • Search Google Scholar
    • Export Citation
  • 10. GM Young DH Schmiel VL Miller 1999 A new pathway for the secretion of virulence factors by bacteria: The flagellar export apparatus functions as a protein-secretion system Proc Natl Acad Sci U S A 96 6456 6461.

    • Search Google Scholar
    • Export Citation
  • 11. ME Konkel SA Gray BJ Kim SG Garvis JJ Yoon 1999 Identification of the enteropathogens Campylobacter jejuni and Campylobacter coli based on the cadF virulence gene and its product Clin Microbiol 37 510 517.

    • Search Google Scholar
    • Export Citation
  • 12. JE Christensen SA Pacheco ME Konkel 2009 Identification of a Campylobacter jejuni-secreted protein required for maximal invasion of host cells Mol Microbiol 73 650 662.

    • Search Google Scholar
    • Export Citation
  • 13. JM Neal-McKinney JE Christensen ME Konkel 2010 Amino-terminal residues dictate the export efficiency of the Campylobacter jejuni filament proteins via the flagellum Mol Microbiol 76 4 918 931.

    • Search Google Scholar
    • Export Citation
  • 14. Z Pei C Burucoa B Grignon S Baqar XZ Huang DJ Kopecko AL Bourgeois JL Fauchere MJ Blaser 1998 Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice Infect Immun 66 938 943.

    • Search Google Scholar
    • Export Citation
  • 15. ME Konkel MR Monteville V Rivera-Amill LA Joens 2001 The pathogenesis of Campylobacter jejuni-mediated enteritis Curr Issues Intest Microbiol 2 55 71.

    • Search Google Scholar
    • Export Citation
  • 16. F Poly P Guerry 2008 Pathogenesis of Campylobacter Curr Opin Gastroenterol 24 27 31.

  • 17. TP Euker ME Konkel 2012 The cooperative action of bacterial fibronectin-binding proteins and secreted proteins promote maximal Campylobacter jejuni invasion of host cells by stimulating membrane ruffling Cell Microbiol 14 226 238.

    • Search Google Scholar
    • Export Citation
  • 18. M Krause-Gruszczynska M Rohde R Hartig H Genth G Schmidt T Keo W Koenig WG Miller ME Konkel S Backert 2007 Role of small Rho GTPases Rac1 and Cdc42 in host cell invasion of Campylobacter jejuni Cell Microbiol 9 2431 2444.

    • Search Google Scholar
    • Export Citation
  • 19. M Boehm M Krause-Gruszczynska M Rohde N Tegtmeyer S Takahashi OA Oyarzabal S Backert 2011 Major host factors involved in epithelial cell invasion of Campylobacter jejuni: Role of fibronectin, integrin beta1, FAK, Tiam-1 and DOCK180 in activating Rho GTPase Rac1 Front Cell Infect Microbiol 1 17.

    • Search Google Scholar
    • Export Citation
  • 20. L Brøndsted MT Andersen M Parker K Jørgensen H Ingmer 2005 The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells Appl Environ Microbiol 71 3205 3212.

    • Search Google Scholar
    • Export Citation
  • 21. KT Baek CS Vegge J Skórko-Glonek L Brøndsted 2011 Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology Appl Environ Microbiol 77 57 66.

    • Search Google Scholar
    • Export Citation
  • 22. B Hoy T Geppert M Boehm F Reisen P Plattner G Gadermaier N Sewald F Ferreira P Briza G Schneider S Backert S Wessler 2012 Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin J Biol Chem 23 10115 10120.

    • Search Google Scholar
    • Export Citation
  • 23. M Boehm B Hoy M Rohde N Tegtmeyer KT Bæk OA Oyarzabal L Brøndsted S Wessler S Backert 2012 Rapid paracellular transmigration of Campylobacter jejuni across polarized epithelial cells without affecting TER: role of proteolytic-active HtrA cleaving E-cadherin but not fibronectin Gut Pathog 4 3.

    • Search Google Scholar
    • Export Citation
  • 24. H Ingmer L Brøndsted 2009 Proteases in bacterial pathogenesis Res Microbiol 160 9 704 710.

  • 25. D Frees L Brøndsted H Ingmer 2013 Bacterial proteases and virulence Subcell Biochem 66 161 192.

  • 26. T Clausen C Southan M Ehrmann 2002 The HtrA family of proteases: implications for protein composition and cell fate Mol Cell 10 443 455.

    • Search Google Scholar
    • Export Citation
  • 27. T Clausen M Kaiser R Huber M Ehrmann 2011 HTRA proteases: regulated proteolysis in protein quality control Nat Rev Mol Cell Biol 12 152 162.

    • Search Google Scholar
    • Export Citation
  • 28. DY Kim KK Kim 2005 Structure and function of HtrA family proteins, the key players in protein quality control J Biochem Mol Biol 38 266 274.

    • Search Google Scholar
    • Export Citation
  • 29. B Hoy M Löwer C Weydig G Carra N Tegtmeyer T Geppert P Schröder N Sewald S Backert G Schneider S Wessler 2010 Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion EMBO Rep 11 798 804.

    • Search Google Scholar
    • Export Citation
  • 30. E M Jullien G Labesse JM Pagès G Molle JM Bolla 2000 MOMP (major outer membrane protein) of Campylobacter jejuni; a versatile pore-forming protein FEBS Lett 469 1 93 97.

    • Search Google Scholar
    • Export Citation
  • 31. KT Bæk CS Vegge L Brøndsted 2011 HtrA chaperone activity contributes to host cell binding in Campylobacter jejuni Gut Pathog 3 13.

    • Search Google Scholar
    • Export Citation
  • 32. DR Hendrixson BJ Akerley VJ DiRita 2001 Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility Mol Microbiol 40 214 224.

    • Search Google Scholar
    • Export Citation
  • 33. DR Hendrixson VJ DiRita 2003 Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus Mol Microbiol 50 687 702.

    • Search Google Scholar
    • Export Citation
  • 34. SN Joslin DR Hendrixson 2009 Activation of the FlgSR two-component system of Campylobacter jejuni by the flagellar export apparatus J Bacteriol 191 2656 2667.

    • Search Google Scholar
    • Export Citation
  • 35. ME Konkel DJ Mead SF Hayes W Cieplak Jr 1992 Translocation of Campylobacter jejuni across human polarized epithelial cell monolayer cultures J Infect Dis 166 308 315.

    • Search Google Scholar
    • Export Citation
  • 36. PH Everest H Goossens JP Butzler D Lloyd S Knutton JM Ketley PH Williams 1992 Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli J Med Microbiol 37 319 325.

    • Search Google Scholar
    • Export Citation
  • 37. P Harvey T Battle S Leach 1999 Different invasion phenotypes of Campylobacter isolates in Caco-2 cell monolayers J Med Microbiol 48 461 469.

    • Search Google Scholar
    • Export Citation
  • 38. AM Brás JM Ketley 1999 Transcellular translocation of Campylobacter jejuni across human polarised epithelial monolayers FEMS Microbiol Lett 179 209 215.

    • Search Google Scholar
    • Export Citation
  • 39. V Rivera-Amill ME Konkel 1999 Secretion of Campylobacter jejuni Cia proteins is contact dependent Adv Exp Med Biol 473 225 229.

  • 40. ME Konkel JD Klena V Rivera-Amill MR Monteville D Biswas B Raphael J Mickelson 2004 Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus J Bacteriol 186 11 3296 3303.

    • Search Google Scholar
    • Export Citation
  • 41. J Parkhill BW Wren K Mungall JM Ketley C Churcher D Basham T Chillingworth RM Davies T Feltwell S Holroyd K Jagels AV Karlyshev S Moule MJ Pallen CW Penn MA Quail MA Rajandream KM Rutherford AH van Vliet S Whitehead BG Barrell 2000 The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences Nature 403 6770 665 668.

    • Search Google Scholar
    • Export Citation
  • 42. DE Fouts EF Mongodin RE Mandrell WG Miller DA Rasko J Ravel LM Brinkac RT DeBoy CT Parker SC Daugherty RJ Dodson AS Durkin R Madupu SA Sullivan JU Shetty MA Ayodeji A Shvartsbeyn MC Schatz JH Badger CM Fraser KE Nelson 2005 Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species PLoS Biol 3 e15.

    • Search Google Scholar
    • Export Citation
  • 43. D Hofreuter J Tsai RO Watson V Novik B Altman M Benitez C Clark C Perbost T Jarvie L Du JE Galán 2006 Unique features of a highly pathogenic Campylobacter jejuni strain Infect Immun 74 8 4694 4707.

    • Search Google Scholar
    • Export Citation
  • 44. RS Wiesner DR Hendrixson VJ DiRita 2003 Natural transformation of Campylobacter jejuni requires components of a type II secretion system J Bacteriol 185 5408 5418.

    • Search Google Scholar
    • Export Citation
  • 45. A Olofsson A Vallström K Petzold N Tegtmeyer J Schleucher S Carlsson R Haas S Backert SN Wai G Gröbner A Arnqvist 2010 Biochemical and functional characterization of Helicobacter pylori vesicles Mol Microbiol 77 1539 1555.

    • Search Google Scholar
    • Export Citation
  • 46. JM Boll DR Hendrixson 2013 A regulatory checkpoint in flagellar biogenesis initiates signal transduction to activate transcription of flagellar genes.

    • Search Google Scholar
    • Export Citation
  • 47. J Tsang TG Smith LE Pereira TR Hoover 2013 Insertion mutations in Helicobacter pylori flhA reveal strain differences in RpoN-dependent gene expression Microbiology 159 58 67.

    • Search Google Scholar
    • Export Citation
  • 48. TG Smith L Pereira TR Hoover 2009 Helicobacter pylori FlhB processing-deficient variants affect flagellar assembly but not flagellar gene expression Microbiology 155 1170 1180.

    • Search Google Scholar
    • Export Citation
  • 49. M Löwer C Weydig D Metzler A Reuter A Starzinski-Powitz S Wessler G Schneider 2008 Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA PLoS One 3 e3510.

    • Search Google Scholar
    • Export Citation
  • 50. N Tegtmeyer R Wittelsberger R Hartig S Wessler Martinez-Quiles S Backert 2011 Serine phosphorylation of cortactin controls focal adhesion kinase activity and cell scattering induced by Helicobacter pylori Cell Host Microbe 9 520 531.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 2 2 0
Dec 2020 4 0 0
Jan 2021 2 0 0
Feb 2021 0 0 0
Mar 2021 3 0 0
Apr 2021 1 0 0
May 2021 0 0 0