Authors:
H Jee The University of Tokyo, Japan
Seoul National University Bundang Hospital, Republic of Korea
Yonsei University, Republic of Korea

Search for other papers by H Jee in
Current site
Google Scholar
PubMed
Close
,
E Ochi Nippon Sport Science University, Japan

Search for other papers by E Ochi in
Current site
Google Scholar
PubMed
Close
,
T Sakurai The University of Tokyo, Japan

Search for other papers by T Sakurai in
Current site
Google Scholar
PubMed
Close
,
J-Y Lim Seoul National University Bundang Hospital, Republic of Korea

Search for other papers by J-Y Lim in
Current site
Google Scholar
PubMed
Close
,
K Nakazato Nippon Sport Science University, Japan

Search for other papers by K Nakazato in
Current site
Google Scholar
PubMed
Close
, and
H Hatta The University of Tokyo, Japan

Search for other papers by H Hatta in
Current site
Google Scholar
PubMed
Close
Restricted access

We used the model of eccentric contraction of the hindlimb muscle by Ochi et al. to examine the role of eccentric contraction in muscle plasticity. This model aims to focus on stimulated skeletal muscle responses by measuring tissue weights and tracing the quantities of αB-crystallin and tubulin. The medial gastrocnemius muscle (GCM) responded to electrically induced eccentric contraction (EIEC) with significant increases in tissue weight (p < 0.01) and the ratio of tissue weight to body weight (p < 0.05); however, there was a decrease in soleus muscle weight after EIEC. EIEC in the GCM caused contractile-induced sustenance of the traced proteins, but the soleus muscle exhibited a remarkable decrease in α-tubulin and a 19% decrease in αB-crystallin. EIEC caused fast-to-slow myosin heavy chain (MHC) isoform type-oriented shift within both the GCM and soleus muscle. These results have shown that different MHC isoform type-expressing slow and fast muscles commonly undergo fast-to-slow type MHC isoform transformation. This suggests that different levels of EIEC affected each of the slow and fast muscles to induce different quantitative changes in the expression of αB-crystallin and α-tubulin.

  • 1.

    Agbulut O , Li Z , Mouly V , Butler-Browne GS : Analysis of skeletal and cardiac muscle from desmin knock-out and normal mice by high resolution separation of myosin heavy-chain isoforms. Biol. Cell 88, 131135 (1996)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Arai H , Atomi Y : Chaperone activity of αB-crystallin suppresses tubulin aggregation through complex formation. Cell Struct. Funct. 22, 539544 (1997)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Atomi Y , Toro K , Masuda T , Hatta H : Fiber-type-specific αB-crystallin distribution and its shifts with T(3) and PTU treatments in rat hindlimb muscles. J. Appl. Physiol. 88, 13551364 (2000)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Atomi Y , Yamada S , Strohman R , Nonomura Y : αB-crystallin in skeletal muscle: purification and localization. J. Biochem. 110, 812822 (1991)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Baewer DV , Hoffman M , Romatowski JG , Bain JL , Fitts RH , Riley DA : Passive stretch inhibits central core-like lesion formation in the soleus muscles of hindlimb-suspended unloaded rats. J. Appl. Physiol. 97, 930934 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Cai MC , Huang QY , Liao WG , Wu Z , Liu FY , Gao YQ : Hypoxic training increases metabolic enzyme activity and composition of α-myosin heavy chain isoform in rat ventricular myocardium. Eur. J. Appl. Physiol. 108, 105111 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Conjard A , Peuker H , Pette D : Energy state and myosin heavy chain isoforms in single fibres of normal and transforming rabbit muscles. Pflugers Arch. 436, 962969 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Chleboun GS , Howell JN , Conatser RR , Giesey JJ : Relationship between muscle swelling and stiffness after eccentric exercise. Med. Sci. Sports Exerc. 30, 529535 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Demirel HA , Powers SK , Naito H , Hughes M , Coombes JS : Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: does-response relationship. J. Appl. Physiol. 86, 10021008 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ebbeling CB , Clarkson PM : Exercise-induced muscle damage and adaptation. Sports Med. 7, 207234 (1989)

  • 11.

    Frankenberg NT , Lamb GD , Overgaard K , Murphy RM , Vissing K : Small heat shock proteins translocate to the cytoskeleton in human skeletal muscle following eccentric exercise independently of phosphorylation. J. Appl. Physiol. 116, 14631472 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Frizziero A , Trainito S , Oliva F , Nicoli Aldini N , Masiero S , Maffulli N : The role of eccentric exercise in sport injuries rehabilitation. Br. Med. Bull. 110, 4775 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fujita Y , Ohto E , Katayama E , Atomi Y : αB-Crystallin-coated MAP microtubule resists nocodazole and calcium-induced disassembly. J. Cell Sci. 117, 17191726 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Ingalls CP , Warren GL , Williams JH , Ward CW , Armstrong RB : E-C coupling failure in mouse EDL muscle after in vivo eccentric contractions. J. Appl. Physiol. 85, 5867 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Jee H , Sakurai T , Kawada S , Ishii N , Atomi Y : Significant roles of microtubules in mature striated muscle deduced from the correlation between tubulin and its molecular chaperone αB-crystallin in rat muscles. J. Physiol. Sci. 59, 149155 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Karasseva N , Tsika G , Ji J , Zhang A , Mao X , Tsika R : Transcription enhancer factor 1 binds multiple muscle MEF2 and A/T-rich elements during fast-to-slow skeletal muscle fiber type transitions. Mol. Cell. Biol. 23, 51435164 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Komi PV , Karlsson J : Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta Physiol. Scand. 103, 210218 (1978)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lindstedt SL , LaStayo PC , Reich TE : When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol. Sci. 16, 256261 (2001)

    • Search Google Scholar
    • Export Citation
  • 19.

    Lindstedt SL , Reich TE , Keim P , LaStayo PC : Do muscles function as adaptable locomotor springs? J. Exp. Biol. 205, 22112216 (2002)

  • 20.

    Locke M , Noble EG , Atkinson BG : Inducible isoform of HSP70 is constitutively expressed in a muscle fiber type specific pattern. Am. J. Physiol. 261, 774779 (1991)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Lollo PC , Moura CS , Morato PN , Amaya-Farfan J : Differential response of heat shock proteins to uphill and downhill exercise in heart, skeletal muscle, lung and kidney tissues. J. Sports Sci. Med. 12, 461466 (2013)

    • Search Google Scholar
    • Export Citation
  • 22.

    Matter K , Bucher K , Hauri HP : Microtubule perturbation retards both the direct and the indirect apical pathway but does not affect sorting of plasma membrane proteins in intestinal epithelial cells (Caco-2). EMBO J. 9, 31633170 (1990)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Melkani GC , Cammarato A , Bernstein SI : αB-crystallin maintains skeletal muscle myosin enzymatic activity and prevents its aggregation under heat-shock stress. J. Mol. Biol. 358, 635645 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Neufer PD , Benjamin IJ : Differential expression of B-crystallin and Hsp27 in skeletal muscle during continuous contractile activity. Relationship to myogenic regulatory factors. J. Biol. Chem. 271, 2408924095 (1996)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Nosaka K , Newton M , Sacco P : Responses of human elbow flexor muscles to electrically stimulated forced lengthening exercise. Acta Physiol. Scand. 174, 137145 (2002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Ochi E , Nakazato K , Ishii N : Effects of eccentric exercise on joint stiffness and muscle connectin (titin) isoform in the rat hindlimb. J. Physiol. Sci. 57, 16 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Paulsen G , Hanssen KE , Ronnestad BR , Kvamme NH , Ugelstad I , Kadi F , Raastad T : Strength training elevates HSP27, HSP70 and αB-crystallin levels in musculi vastus lateralis and trapezius. Eur. J. Appl. Physiol. 112, 17731782 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pette D , Staron RS : Transitions of muscle fiber phenotypic profiles. Histochem. Cell Biol. 115, 359372 (2001)

  • 29.

    Ralston E , Ploug T , Kalhovde J , Lomo T : Golgi complex, endoplasmic reticulum exit sites, and microtubules in skeletal muscle fibers are organized by patterned activity. J. Neurosci. 21, 875883 (2001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Sakurai T , Fujita Y , Ohto E , Oguro A , Atomi Y : The decrease of the cytoskeleton tubulin follows the decrease of the associating molecular chaperone αB-crystallin in unloaded soleus muscle atrophy without stretch. FASEB J. 19, 11991201 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Schiaffino S , Reggiani C : Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 14471531 (2011)

  • 32.

    Servais S , Couturier K , Koubi H , Rouanet JL , Desplanches D , Sornay-Mayet MH , Sempore B , Lavoie JM , Favier R : Effect of voluntary exercise on H2O2 release by subsarcolemmal and intermyofibrillar mitochondria. Free Radic. Biol. Med. 35, 2432 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Short KR , Vittone JL , Bigelow ML , Proctor DN , Coenen-Schimke JM , Rys P , Nair KS : Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. J. Appl. Physiol. 99, 95102 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Stevens L , Gohlsch B , Mounier Y , Pette D : Changes in myosin heavy chain mRNA and protein isoforms in single fibers of unloaded rat soleus muscle. FEBS Lett. 463, 1518 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Sun TX , Das BK , Liang JJ : Conformational and functional differences between recombinant human lens αA- and αB-crystallin. J. Biol. Chem. 272, 62206225 (1997)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Zainuddin Z , Sacco P , Newton M , Nosaka K : Light concentric exercise has a temporarily analgesic effect on delayed-onset muscle soreness, but no effect on recovery from eccentric exercise. Appl. Physiol. Nutr. Metab. 31, 126134 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 122 0 0
Nov 2024 46 0 0
Dec 2024 37 0 0
Jan 2025 55 0 0
Feb 2025 84 0 0
Mar 2025 34 0 0
Apr 2025 0 0 0