Authors:
B Nagy Institute of Physiology, School of Medicine, University of Pécs, Pécs, Hungary

Search for other papers by B Nagy in
Current site
Google Scholar
PubMed
Close
,
I Szabó Institute of Physiology, School of Medicine, University of Pécs, Pécs, Hungary

Search for other papers by I Szabó in
Current site
Google Scholar
PubMed
Close
,
G Takács Institute of Physiology, School of Medicine, University of Pécs, Pécs, Hungary

Search for other papers by G Takács in
Current site
Google Scholar
PubMed
Close
,
B Csetényi Institute of Physiology, School of Medicine, University of Pécs, Pécs, Hungary

Search for other papers by B Csetényi in
Current site
Google Scholar
PubMed
Close
,
E Hormay Institute of Physiology, School of Medicine, University of Pécs, Pécs, Hungary

Search for other papers by E Hormay in
Current site
Google Scholar
PubMed
Close
, and
Z Karádi Institute of Physiology, School of Medicine, University of Pécs, Pécs, Hungary

Search for other papers by Z Karádi in
Current site
Google Scholar
PubMed
Close
Restricted access

The mediodorsal prefrontal cortex (mdPFC) is a key structure of the central glucose-monitoring (GM) neural network. Previous studies indicate that intracerebral streptozotocin (STZ) microinjection-induced destruction of local chemosensory neurons results in feeding and metabolic alterations. The present experiments aimed to examine whether STZ microinjection into the mdPFC causes metabolic deficits. To do so, glucose tolerance test (GTT) and measurements of plasma metabolites were performed in STZ-treated or control rats. Intraperitoneal D-glucose load was delivered 20 min or 4 weeks following the intracerebral microinjection of STZ or saline (acute or subacute GTT, respectively). The STZ-treated rats displayed acute glucose intolerance: at the 120th min of the test, blood glucose level of these rats was significantly higher than that of the ones in the control group. When determining the plasma level of various metabolites, 30 min following the intracerebral STZ or saline microinjection, the triglyceride concentration of the STZ-treated rats was found to be reduced compared with that of the control rats. The GM neurons of the mdPFC are suggested to be involved in the organization of complex metabolic processes by which these chemosensory cells contribute to adaptive control mechanisms of the maintenance of homeostasis.

  • 1.

    Adachi A , Shimizu N , Oomura Y , Kobashi M : Convergence of hepatoportal glucose-sensitive afferent signals to glucose-sensitive units within the nucleus of the solitary tract. Neurosci. Lett. 46, 215218 (1984)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Anand BK , Chhina GS , Sharma KN , Dua S , Singh B : Activity of single neurons in the hypothalamic feeding centers: effect of glucose. Am. J. Physiol. 207, 11461154 (1964)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Aou S , Oomura Y , Lenard L , Nishino H , Inokuchi A , Minami T , Misaki H : Behavioral significance of monkey hypothalamic glucose-sensitive neurons. Brain Res. 302, 6974 (1984)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Arluison M , Quignon M , Nguyen P , Thorens B , Leloup C , Penicaud L : Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain – an immunohistochemical study. J. Chem. Neuroanat. 28, 117136 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Baldwin AE , Sadeghian K , Kelley AE : Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J. Neurosci. 22, 10631071 (2002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Duelli R , Schrock H , Kuschinsky W , Hoyer S : Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int. J. Dev. Neurosci. 12, 737743 (1994)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Egyed R , Lukats B , Karadi Z : Diabetes mellitus-like metabolic deficits elicited by ventromedial hypothalamic streptozotocin microinjection. J. Physiol. (Lond.) 526, 173174 (2000)

    • Search Google Scholar
    • Export Citation
  • 8.

    Ganda OP , Rossini AA , Like AA : Studies on streptozotocin diabetes. Diabetes 25, 595603 (1976)

  • 9.

    Garami A , Székely M : Body temperature: its regulation in framework of energy balance. Temperature (Austin) 1(1), 2829 (2014)

  • 10.

    Kang L , Routh VH , Kuzhikandathil EV , Gaspers LD , Levin BE : Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons. Diabetes 53, 549559 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Karádi Z , Lukats B , Papp S , Szalay C , Egyed R , Lenard L , Takacs G : Involvement of forebrain glucose-monitoring neurons in taste information processing: electrophysiological and behavioral studies. Chem. Senses 30(Suppl. 1), i168i169 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Karádi Z , Lukats B , Papp S , Takacs G , Egyed R , Lenard L : The central glucose-monitoring neural network: major protector of the adaptive homeostatic balance for well being of the organism. International Congress Series 1269, 3033 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Karádi Z , Nagy B , Szabó I , Szalay C , Takács G , Keresztes D , Hideg B , Faragó B , Góré MB , Lénárd L : Complex functional attributes of forebrain glucose-monitoring neurons in the maintenance of homeostasis. Acta Physiol. (Oxf.) 202(Suppl. 684), O20 (2011)

    • Search Google Scholar
    • Export Citation
  • 14.

    Karádi Z , Oomura Y , Nishino H , Scott TR , Lenard L , Aou S : Responses of lateral hypothalamic glucose-sensitive and glucose-insensitive neurons to chemical stimuli in behaving rhesus monkeys. J. Neurophysiol. 67, 389400 (1992)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Keszthelyi Z , Past T , Lukats B , Koltai K , Karadi Z : The central effect of chromium on glucose metabolism. Pharmacopsychiatry 37, 242 (2004)

  • 16.

    Kolb B : Functions of the frontal cortex of the rat: a comparative review. Brain Res. 320, 6598 (1984)

  • 17.

    Kolb B , Nonneman AJ : Prefrontal cortex and the regulation of food intake in the rat. J. Comp. Physiol. Psychol. 88, 806815 (1975)

  • 18.

    Leloup C , Arluison M , Lepetit N , Cartier N , Marfaing-Jallat P , Ferre P , Penicaud L : Glucose transporter 2 (GLUT 2): expression in specific brain nuclei. Brain Res. 638, 221226 (1994)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lénárd L , Karadi Z , Faludi B , Czurko A , Niedetzky C , Vida I , Nishino H : Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics. Brain Res. Bull. 37, 149155 (1995)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Levin BE : Metabolic sensing neurons and the control of energy homeostasis. Physiol. Behav. 89, 486489 (2006)

  • 21.

    Lyoo IK , Yoon S , Jacobson AM , Hwang J , Musen G , Kim JE , Simonson DC , Bae S , Bolo N , Kim DJ , Weinger K , Lee JH , Ryan CM , Renshaw PF : Prefrontal cortical deficits in type 1 diabetes mellitus: brain correlates of comorbid depression. Arch. Gen. Psychiatry 69, 12671276 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lyoo IK , Yoon S , Renshaw PF , Hwang J , Bae S , Musen G , Kim JE , Bolo N , Jeong HS , Simonson DC , Lee SH , Weinger K , Jung JJ , Ryan CM , Choi Y , Jacobson AM : Network-level structural abnormalities of cerebral cortex in type 1 diabetes mellitus. PLoS One 8, e71304 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Moreira EL , de Oliveira J , Engel DF , Walz R , de Bem AF , Farina M , Prediger RD : Hypercholesterolemia induces short-term spatial memory impairments in mice: up-regulation of acetylcholinesterase activity as an early and causal event? J. Neural Transm. (Vienna) 121, 415426 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Morgane PJ , Galler JR , Mokler DJ : A review of systems and networks of the limbic forebrain/limbic midbrain. Prog. Neurobiol. 75, 143160 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Morgenstern I , Ye Z , Liang S , Fagan S , Leibowitz SF : Involvement of cholinergic mechanisms in the behavioral effects of dietary fat consumption. Brain Res. 1470, 2434 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Nagy B , Szabo I , Csetenyi B , Hormay E , Papp S , Keresztes D , Karadi Z : Noradrenaline and acetylcholine responsiveness of glucose-monitoring and glucose-insensitive neurons in the mediodorsal prefrontal cortex. Brain Res. 1543, 159164 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Nagy B , Szabo I , Papp S , Takacs G , Szalay C , Karadi Z : Glucose-monitoring neurons in the mediodorsal prefrontal cortex. Brain Res. 1444, 3844 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Nair SG , Navarre BM , Cifani C , Pickens CL , Bossert JM , Shaham Y : Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology 36, 497510 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Niijima A : Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig. J. Physiol. 332, 315323 (1982)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Oomura Y (1980): Input-output organisation in the hypothalamus relating to food intake behaviour. In: The Handbook of the Hypothalamus II, eds Morgane PJ, Panksepp J, Marcel Dekker Inc., New York, NY, USA, pp. 557620

    • Search Google Scholar
    • Export Citation
  • 31.

    Oomura Y , Kimura K , Ooyama H , Maeno T , Iki M , Kuniyoshi M : Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats. Science 143, 484485 (1964)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Oomura Y , Ono T , Ooyama H , Wayner MJ : Glucose and osmosensitive neurons of the rat hypothalamus. Nature 222, 282284 (1969)

  • 33.

    Pannacciulli N , Le DS , Salbe AD , Chen K , Reiman EM , Tataranni PA , Krakoff J : Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage 35, 511517 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Papp S , Lukats B , Takacs G , Szalay C , Karadi Z : Glucose-monitoring neurons in the nucleus accumbens. Neuroreport 18, 15611565 (2007)

  • 35.

    Pellegrino LJ , Pellegrino AS , Cushman AJ (1979): A Stereotaxic Atlas of the Rat Brain. Plenum Press, New York, NY, USA

  • 36.

    Plaschke K , Hoyer S : Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int. J. Dev. Neurosci. 11, 477483 (1993)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Ravasz E , Barabasi AL : Hierarchical organization in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 026112 (2003)

  • 38.

    Rocca AS , Brubaker PL : Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140, 16871694 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Szkudelski T : The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50, 537546 (2001)

  • 40.

    Telkes I , Szalay C , Lénárd L , Karádi Z : Deficits of hypothalamic GLUT2 immunolabeling after streptozotocin microinjection into the ventromedial hypothalamic nucleus of the rat. Front. Neurosci. 5, 231 (2011)

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 36 3 0
Feb 2024 34 0 0
Mar 2024 20 0 0
Apr 2024 12 0 0
May 2024 10 0 0
Jun 2024 12 0 0
Jul 2024 0 0 0