Authors:
A Ghorbani Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran

Search for other papers by A Ghorbani in
Current site
Google Scholar
PubMed
Close
,
R Shafiee-Nick Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Search for other papers by R Shafiee-Nick in
Current site
Google Scholar
PubMed
Close
,
SA Zojaji Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Search for other papers by SA Zojaji in
Current site
Google Scholar
PubMed
Close
, and
MT Rajabi-Mashhadi Department of Surgery, Omid Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
Endoscopic & Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Search for other papers by MT Rajabi-Mashhadi in
Current site
Google Scholar
PubMed
Close
Restricted access

Recent studies suggest that proinsulin-connecting peptide (C-peptide) may exhibit characteristics of a hormone and show physiological functions in various tissues. This study was aimed to determine whether C-peptide could be involved in the regulation of lipolysis, adiponectin release, and function of mesenchymal stem cells (MSCs) in adipose tissue. Human subcutaneous adipose tissue was cultured in the presence of C-peptide. The level of lipolysis was determined by glycerol measurement in the conditioned media. Effect of C-peptide on adiponectin secretion was evaluated in differentiated adipocytes. The adipogenic and osteogenic abilities of adipose MSCs were evaluated using oil red and alizarin red staining, respectively. The tetrazolium bromide test was conducted for evaluating the effect of C-peptide on MSCs proliferation. C-peptide induced a significant decrease in basal lipolysis at concentrations of 8 and 16 nM (p < 0.05). It had no significant effects on isoproterenol-stimulated lipolysis, adiponectin secretion, and adipogenic or osteogenic differentiation of MSCs. At a concentration of 4 nM, this peptide significantly increased the proliferative capability of MSCs (p < 0.05). These results suggest that C-peptide has some physiological effects in human subcutaneous adipose tissue and contributes to the regulation of basal lipolysis and pool of MSCs.

  • 1.

    Adamczak M , Wiecek A : The adipose tissue as an endocrine organ. Semin. Nephrol. 33, 213 (2013)

  • 2.

    Aguena M , Dalto Fanganiello R , Tissiani LAL , Ishiy FAA , Atique R , Alonso N , Passos-Bueno MR : Optimization of parameters for a more efficient use of adipose-derived stem cells in regenerative medicine therapies. Stem Cells Int. 2012, 303610 (2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Alford AI , Reddy AB , Goldstein SA , Murthy P , Tayim R , Sharma G : Two molecular weight species of thrombospondin-2 are present in bone and differentially modulated in fractured and nonfractured tibiae in a murine model of bone healing. Calcif. Tissue Int. 90, 420428 (2012)

    • Search Google Scholar
    • Export Citation
  • 4.

    Arca M , Pigna G , Favoccia C : Mechanisms of diabetic dyslipidemia: relevance for atherogenesis. Curr. Vasc. Pharmacol. 10, 684686 (2012)

  • 5.

    Arner P : Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann. Med. 27, 435438 (1995)

  • 6.

    Brandenburg D : History and diagnostic significance of C-peptide. Exp. Diabetes Res. 2008, 576862 (2008)

  • 7.

    Cianfarani F , Toietta G , Di Rocco G , Cesareo E , Zambruno G , Odorisio T : Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 21, 545553 (2013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cifarelli V , Geng X , Styche A , Lakomy M , Trucco M , Luppi P : C-peptide reduces high glucose-induced apoptosis of endothelial cells and decreases NAD(P)H-oxidase reactive oxygen species generation. Diabetologia 54, 27022712 (2011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Coelho M , Oliveira T , Fernandes R : Biochemistry of adipose tissue: an endocrine organ. Arch. Med. Sci. 9, 191200 (2013)

  • 10.

    Ducharme NA , Bickel PE : Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942949 (2008)

  • 11.

    Eiras S , Teijeira-Fernández E , Shamagian LG , Fernandez AL , Vazquez-Boquete A , Gonzalez-Juanatey JR : Extension of coronary artery disease is associated with increased IL-6 and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine 43, 174180 (2008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Fadini GP , Albiero M , Vigili de Kreutzenberg S , Boscaro E , Cappellari R , Marescotti M , Poncina N , Agostini C , Avogaro A : Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 36, 943949 (2013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fakhry M , Hamade E , Badran B , Buchet R , Magne D : Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J. Stem Cells 5, 136148 (2013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Farmer SR : Transcriptional control of adipocyte formation. Cell Metab. 4, 263273 (2006)

  • 15.

    Garcia-Serrano S , Gutiérrez-Repiso C , Gonzalo M , Garcia-Arnes J , Valdes S , Soriguer F , Perez-Valero V , Alaminos-Castillo MA , Francisco Cobos-Bravo J , Moreno-Ruiz FJ , Rodriguez-Cañete A , Rodríguez-Pacheco F , Garcia-Escobar E , García-Fuentes E : C-peptide modifies leptin and visfatin secretion in human adipose tissue. Obesity 23, 16071615 (2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ghorbani A , Hadjzadeh MR , Rajaei Z , Zendehbad SB : Effects of fenugreek seeds on adipogenesis and lipolysis in normal and diabetic rat. Pak. J. Biol. Sci. 17, 523528 (2014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ghorbani A , Jalali SA , Varedi M : Isolation of adipose tissue mesenchymal stem cells without tissue destruction: a non-enzymatic method. Tissue Cell 46, 5458 (2014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ghorbani A , Naderi-Meshkinb H : The endocrine regulation of stem cells: physiological importance and pharmacological potentials for cell-based therapy. Curr. Stem Cell Res. Ther. 11, 1934 (2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ghorbani A , Omrani GH , Hadjzadeh MR , Varedi M : Effects of rat C-peptide-II on lipolysis and glucose consumption in cultured rat adipose tissue. Exp. Clin. Endocrinol. Diabetes 119, 343347 (2011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ghorbani A , Omrani GH , Hadjzadeh MR , Varedi M : Proinsulin C-peptide inhibits lipolysis in diabetic rat adipose tissue through phosphodiestrase-3B enzyme. Horm. Metab. Res. 45, 221225 (2013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ghorbani A , Shafiee-Nick R : Pathological consequences of C-peptide deficiency in insulin-dependent diabetes mellitus. World J. Diabetes 6, 145150 (2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ghorbani A , Varedi M , Hadjzadeh MR , Omrani GH : Type-1 diabetes induces depot-specific alterations in adipocyte diameter and mass of adipose tissues in the rat. Exp. Clin. Endocrinol. Diabetes 118, 442448 (2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Grunberger G , Qiang X , Li Z , Sbrissa D , Shisheva A , Sima AA : Molecular basis for the insulinomimetic effects of C-peptide. Diabetologia 44, 12471257 (2001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hajer GR , van Haeften TW , Visseren FL : Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 29, 29592971 (2008)

  • 25.

    Hansen A , Johansson BL , Wahren J , von Bibra H : C-peptide exerts beneficial effects on myocardial blood flow and function in patients with type 1 diabetes. Diabetes 51, 30773082 (2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hills CE , Brunskill NJ : C-Peptide and its intracellular signaling. Rev. Diabet. Stud. 6, 138147 (2009)

  • 27.

    Jo J , Gavrilova O , Pack S , Jou W , Mullen S , Sumner AE , Cushman SW , Periwal V : Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5, e1000324 (2009)

    • Search Google Scholar
    • Export Citation
  • 28.

    Johansson BL , Borg K , Fernqvist-Forbes E , Odergren T , Remahl S , Wahren J : C-peptide improves autonomic nerve function in IDDM patients. Diabetologia 39, 687695 (1996)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Johansson BL , Sundell J , Ekberg K , Jonsson C , Seppänen M , Raitakari O , Luotolahti M , Nuutila P , Wahren J , Knuuti J : C-peptide improves adenosine-induced myocardial vasodilation in type 1 diabetes patients. Am. J. Physiol. Endocrinol. Metab. 286, E14E19 (2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jumabay M , Moon JH , Yeerna H , Boström KI : Effect of diabetes mellitus on adipocyte-derived stem cells in rat. J. Cell Physiol. 230, 28212828 (2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kersten S : Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2, 282286 (2001)

  • 32.

    Klaus S : Adipose tissue as a regulator of energy balance. Curr. Drug Targets 5, 241250 (2004)

  • 33.

    Kunt T , Schneider S , Pfutzner A , Goitum K , Engelbach M , Schauf B , Beyer J , Forst T : The effect of human proinsulin C-peptide on erythrocyte deformability in patients with Type I diabetes mellitus. Diabetologia 42, 465471 (1999)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lafontan M : Adipose tissue and adipocyte dysregulation. Diabetes Metab. 40, 1628 (2014)

  • 35.

    Lafontan M , Langin D : Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48, 275297 (2009)

  • 36.

    Lefterova MI , Lazar MA : New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107114 (2009)

  • 37.

    Minteer DM , Young MT , Lin YC , Over PJ , Rubin JP , Gerlach JC , Marra KG : Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications. J. Tissue Eng. 6, 2041731415579215 (2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Montague CT , Prins JB , Sanders L , Digby JE , O’Rahilly S : Depot- and sex-specific differences in human leptin mRNA expression implications for the control of regional fat distribution. Diabetes 46, 342347 (1997)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Motoshima H , Wu X , Sinha MK , Hardy VE , Rosato EL , Barbot DJ , Rosato FE , Goldstein BJ : Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J. Clin. Endocrinol. Metab. 87, 56625667 (2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Nerlov C : The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol. 17, 318324 (2007)

    • Search Google Scholar
    • Export Citation
  • 41.

    Nordquist L , Moe E , Sjoquist M : The C-peptide fragment EVARQ reduces glomerular hyperfiltration in streptozotocin-induced diabetic rats. Diabetes Metab. Res. Rev. 23, 400405 (2007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ong WK , Sugii S : Adipose-derived stem cells: fatty potentials for therapy. Int. J. Biochem. Cell Biol. 45, 10831086 (2013)

  • 43.

    Raghupathy P : Diabetic ketoacidosis in children and adolescents. Indian J. Endocrinol. Metab. 19(Suppl . 1), S55S57 (2015)

  • 44.

    Richelsen B , Pedersen SB , Moller-Pedersen T , Bk JF : Regional differences in triglyceride breakdown in human adipose tissue: effects of catecholamines, insulin, and prostaglandin E2. Metabolism 40, 990996 (1991)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Rosen ED , Spiegelman BM : Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16, 145171 (2000)

  • 46.

    Sato Y , Oshida Y , Han YQ , Morishita Y , Li L , Ekberg K , Jörnvall H , Wahren J : C-peptide fragments stimulate glucose utilization in diabetic rats. Cell. Mol. Life Sci. 61, 727732 (2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Spalding KL , Arner E , Westermark PO , Bernard S , Buchholz BA , Bergmann O , Blomqvist L , Hoffstedt J , Näslund E , Britton T , Concha H , Hassan M , Rydén M , Frisén J , Arner P : Dynamics of fat cell turnover in humans. Nature 453, 783787 (2008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Stolic M , Russel A , Hutley L , Fielding G , Hay J , MacDonald G , Whitehead J , Prins J : Glucose uptake and insulin action in human adipose tissue influence of BMI, anatomical depot and body fat distribution. Int. J. Obes. Relat. Metab. Disord. 26, 1723 (2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Turer AT , Scherer PE : Adiponectin: mechanistic insights and clinical implications. Diabetologia 55, 23192326 (2012)

  • 50.

    Van Harmelen V , Lonnqvist F , Thorne A , Wennlund A , Large V , Reynisdottir S , Arner P : Noradrenaline-induced lipolysis in isolated mesenteric, omental and subcutaneous adipocytes from obese subjects. Int. J. Obes. Relat. Metab. Disord. 21, 972979 (1997)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Virtanen KA , Lonnroth P , Parkkola R , Peltoniemi P , Asola M , Viljanen T , Tolvanen T , Knuuti J , Rönnemaa T , Huupponen R , Nuutila P : Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J. Clin. Endocrinol. Metab. 87, 39023910 (2002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Wahren J , Foyt H , Daniels M , Arezzo JC : Long-acting c-peptide and neuropathy in type 1 diabetes: a 12-month clinical trial. Diabetes Care 39, 596602 (2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Wahren J , Larsson C : C-peptide: new findings and therapeutic possibilities. Diabetes Res. Clin. Pract. 107, 309319 (2015)

  • 54.

    Yamauchi T , Kadowaki T : Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int. J. Obes. (Lond.) 32, S13S18 (2008)

    • Search Google Scholar
    • Export Citation
  • 55.

    Zierath GR , Livingston JN , Thorne A , Bolinder J , Reynisdottir S , Lönnqvist F , Arner P : Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulinreceptor substrate-1 pathway. Diabetologia 41, 13431354 (1998)

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 4 0 0
Jul 2023 6 0 0
Aug 2023 17 0 0
Sep 2023 8 0 0
Oct 2023 7 3 0
Nov 2023 4 5 0
Dec 2023 5 1 0