The migrating motility complex (MMC), a cyclical phenomenon, represents rudimentary motility pattern in the gastrointestinal tract. The MMC is observed mostly in the stomach and gut of man and numerous animal species. It contains three or four phases, while its phase III is the most characteristic. The mechanisms controlling the pattern are unclear in part, although the neural control of the MMC seems crucial. The main goal of this article was to discuss the importance of intrinsic innervation of the gastrointestinal tract in MMC initiation, migration, and cessation to emphasize that various MMC-controlling mechanisms act through the enteric nervous system. Two main neural regions, central and peripheral, are able to initiate the MMC. However, central regulation of the MMC may require cooperation with the enteric nervous system. When central mechanisms are not active, the MMC can be initiated peripherally in any region of the small bowel. The enteric nervous system affects the MMC in response to the luminal stimuli which can contribute to the initiation and cessation of the cycle, and it may evoke irregular phasic contractions within the pattern. The hormonal regulators released from the endocrine cells may exert a modulatory effect upon the MMC mostly through the enteric nervous system. Their central action could also be considered. It can be concluded that the enteric nervous system is involved in the great majority of the MMC-controlling mechanisms.
Accarino AM , Azpiroz F , Malagelada J-R : Gut perception in humans is modulated by interacting gut stimuli. Am. J. Physiol. 282, G220–G225 (2002)
Adrian TE , Bloom SR , Bryant MG , Polak JM , Heitz P , Barnes AJ : Distribution and release of human pancreatic polypeptide. Gut 17, 940–944 (1976)
Ahluwalia NK , Thompson DG , Barlow J , Heggie L : Human small intestinal contractions and aboral traction forces during fasting and after feeding. Gut 35, 625–630 (1994)
Al-Saffar A : Analysis of the control of intestinal motility in fasted rats with special reference to neurotensin. Scand. J. Gastroenterol. 19, 422–428 (1984)
Al-Saffar A , Rosell S : Effects of neurotensin and neurotensin analogues on the migrating myoelectrical complexes in the small intestine of rats. Acta Physiol. Scand. 112, 203–208 (1981)
Al-Saffar A , Tatemoto K (1984): Effect of peptide YY and porcine pancreatic polypeptide on migrating myoelectric complexes in the small intestine of the rat. In: Gastrointestinal Motility, ed Roman C, MTP Press Ltd., Lancaster, pp. 215–222
Altaparmakov I , Wienbeck M (1982): Adrenergic control of interdigestive migrating myoelectric complex (IDMEC). In: Motility of the Digestive Tract, ed Wienbeck M, Raven Press, New York, pp. 193–199
Andrews JM , O’Donovan DG , Hebbard GS , Malbert CH , Doran SM , Dent J : Human duodenal phase III migrating motor complex activity is predominantly antegrade, as revealed by high-resolution manometry and colour pressure plots. Neurogastroenterol. Motil. 14, 331–338 (2002)
Ariga H , Tsukamoto K , Chen C , Mantyh C , Pappas TN , Takahashi T : Endogenous acyl ghrelin is involved in mediating spontaneous phase III-like contractions of the rat stomach. Neurogastroenterol. Motil. 19, 675–680 (2007)
Avau B , Carbone F , Tack J , Depoortere I : Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol. Motil. 25, 720–732 (2013)
Axelsson L-G , Wallin B , Gillberg P-G , Sjöberg B , Södeberg C , Hellström PM : Regulatory role of 5-HT and muscarinic receptor antagonists on the migrating myoelectric complex in rats. Eur. J. Pharmacol. 467, 211–218 (2003)
Awouters F , Megens A , Verlinden M , Schuurkes J , Niemegeers C , Janssen PA : Loperamide. Survey of studies on mechanism of its antidiarrheal activity. Dig. Dis. Sci. 38, 977–995 (1993)
Aytuğ N , Giral A , Imeryüz N , Enç FY , Bekìroğlu N , Aktaş G , Ulusoy NB : Gender influence on jejunal migrating motor complex. Am. J. Physiol. 280, G255–G263 (2001)
Barber DL , Buchan AM , Leeman SE , Soll AH : Canine enteric submucosal cultures: transmitter release from neurotensin-immunoreactive neurons. Neuroscience 32, 245–253 (1989)
Behrns KE , Sarr MG : Duodenal nutrients inhibit canine jejunal fasting motor patterns through a hormonal mechanism. Dig. Dis. Sci. 39, 1665–1671 (1994)
Beyak MJ , Bulmer DCE , Jiang W , Keating C , Rong W , Grundy D (2006): Extrinsic sensory afferent nerves innervating the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract, ed Johnson LR, Elsevier, Amsterdam, pp. 685–725
Björnsson ES , Abrahamsson H : Interdigestive gastroduodenal manometry in humans. Indication of duodenal phase III as a retroperistaltic pump. Acta Physiol. Scand. 153, 221–230 (1995)
Borody TJ , Byrnes DJ , Titchen DA : Migrating myoelectric complexes and motilin in the dog. J. Physiol. (Lond.) 320, 62P–63P (1981)
Briejer MR , Akkermans LMA , Schuurkes JAJ : Gastrointestinal prokinetic benzamides: the pharmacology underlying stimulation of motility. Pharmacol. Rev. 47, 631–651 (1995)
Brown JC , Dryburgh JR (1978): Isolation of motilin. In: Gut Hormones, ed Bloom SR, Churchill Livingstone, Edinburgh, pp. 327–331
Buéno L , Ferre J-P : Central regulation of intestinal motility by somatostatin and cholecystokinin-octapeptide. Science 216, 1427–1429 (1982)
Bueno L , Ferré JP , Fioramonti J , Honde C : Effects of intracerebroventricular administration of neurotensin, substance P and calcitonin on gastrointestinal motility in normal and vagotomized rats. Regul. Pept. 6, 197–205 (1983)
Buéno L , Fioramonti J (1985): Enkephalinergic control of the gastro-intestinal motility. In: Small Intestinal and Colonic Motility, ed Poitras P, Jouveinal Laboratories/Laboratories Inc., Montreal, pp. 25–34
Buéno L , Fioramonti J , Delvaux M , Frexinos J : Mediators and pharmacology of visceral sensitivity: from basis to clinical investigations. Gastroenterology 112, 1714–1743 (1997)
Buéno L , Fioramonti J , Fargeas MJ , Primi MP : Neurotensin: a central neuromodulator of gastrointestinal motility in the dog. Am. J. Physiol. 248, G15–G19 (1985)
Buéno L , Fioramonti J , Hondè C , Fargeas MJ , Primi MP : Central and peripheral control of gastrointestinal and colonic motility by endogenous opiates in conscious dogs. Gastroenterology 88, 549–556 (1985)
Buéno L , Fioramonti J , Rayner V , Ruckebusch Y : Effects of motilin, somatostatin and pancreatic polypeptide on the migrating myoelectric complex in pigs and dogs. Gastroenterology 82, 1395–1402 (1982)
Buéno L , Fioramonti J , Ruckebusch Y : Rate of flow and digesta and electrical activity of the small intestine in dogs and sheep. J. Physiol. (Lond.) 249, 69–85 (1975)
Buéno L , Fioramonti J , Ruckebusch Y: Mechanisms of propulsion in the small intestine. Ann. Rech. Vét. 8, 293–301 (1977)
Buéno L , Ruckebusch Y : Effect of anticholinergic drugs on the electrical activity of the antrum and duodeno-jejunum in sheep. J. Vet. Pharmacol. Ther. 1, 225–232 (1978)
Buéno L , Ruckebusch Y (1978): Migrating myoelectric complexes: disruption, enhancement and disorganization. In: Gastrointestinal Motility in Health and Disease, ed. Duthie HL, MTP Press Ltd., Lancaster, pp. 83–91
Callahan MJ : Irritable bowel syndrome neuropharmacology. A review of approved and investigational compounds. J. Clin. Gastroenterol. 35(Suppl. 1), S58–S67 (2002)
Calvert EL , Whorwell PJ , Houghton LA : Inter-digestive and post-prandial antro-pyloro-duodenal motor activity in humans: effect of 5-hydroxytryptamine 1 receptor agonism. Aliment. Pharmacol. Ther. 19, 805–815 (2004)
Camilleri M , Papathanasopoulos A , Odunsi ST : Actions and therapeutic pathways of ghrelin for gastrointestinal disorders. Nat. Rev. Gastroenterol. Hepatol. 6, 343–352 (2009)
Carlson GM , Bedi BS , Code CF : Mechanism of propagation of intestinal interdigestive myoelectric complex. Am. J. Physiol. 222, 1027–1030 (1972)
Chen CY , Tsai CY : Ghrelin and motilin in the gastrointestinal system. Curr. Pharm. Res. 18, 4755–4765 (2012)
Christofides ND , Bloom SR , Besterman HS , Adrian TE , Ghatei MA : Release of motilin by oral and intravenous nutrients in man. Gut 20, 102–106 (1979)
Christofides ND , Modlin IM , Fitzpatrick ML , Bloom SR : Effect of motilin on the rate of gastric emptying and gut hormone release during breakfast. Gastroenterology 76, 903–907 (1979)
Chung SA , Greenberg GR , Diamant NE : Relationship of postprandial motilin, gastrin, and pancreatic polypeptide release to intestinal motility during vagal interruption. Can. J. Physiol. Pharmacol. 70, 1148–1153 (1992)
Chung SA , Rotstein O , Greenberg GR , Diamant NE : Mechanisms coordinating gastric and small intestinal MMC: role of extrinsic innervation rather than motilin. Am. J. Physiol. 267, G800–G809 (1994)
Clerc N , Furness JB : Intrinsic primary afferent neurons of the digestive tract. Neurogastroenterol. Motil. 16(Suppl. 1), 24–27 (2004)
Code CF , Marlett JA : The interdigestive myo-electric complex of the stomach and small bowel of dogs. J. Physiol. (Lond.) 246, 289–309 (1975)
Code CF , Schlegel JF (1973): The gastrointestinal interdigestive housekeeper: motor correlates of the interdigestive myoelectric complex of the dog. In: Proceedings of the 4th International Symposium on GI Motility, ed Daniel EE, Mitchell Press, Vancouver, pp. 631–634
Collins SM , Gardner JD : Cholecystokinin-induced contraction of dispersed smooth muscle cells. Am. J. Physiol. 243, G497–G504 (1982)
Collins SM , Lewis TD , Fox JET , Track NS , Meghji MM , Daniel EE : Changes in plasma motilin concentration in response to manipulation of intragastric and intraduodenal contents in man. Can. J. Physiol. Pharmacol. 59, 188–194 (1981)
Cooke AR , Chvasta TE , Weisbrodt NW : Effect of pentagastrin on emptying and electrical and motor activity of the dog stomach. Am. J. Physiol. 223, 934–938 (1972)
Cooke HJ , Christofi FL (2006): Enteric neural regulation of mucosal secretion. In: Physiology of the Gastrointestinal Tract, ed Johnson LR, Elsevier, Amsterdam, pp. 737–762
Costa M , Furness JB , Cuello AC , Verhofstad AAJ , Steinbusch HWJ , Elde RP : Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience 7, 351–363 (1982)
Costa M , Patel Y , Furness JB : Evidence that some intrinsic neurons of the intestine contain somatostatin. Neurosci. Lett. 6, 215–223 (1977)
Crowell MD , Mathis C , Schetter VA , Yunus T , Lacy BE : The effects of tegaserod, a 5-HT receptor agonist, on gastric emptying in a murine model of diabetes mellitus. Neurogastroenterol. Motil. 17, 738–743 (2005)
Daniel EE , Sakai Y , Jury J , Fox JET (1982): Mode of action of neurotensin on gastrointestinal motility. In: Motility of the Digestive Tract, ed Wienbeck M, Raven Press, New York, pp. 451–459
Debas HT , Farooq O , Grossman MI : Inhibition of gastric emptying is a physiologic action of cholecystokinin. Gastroenterology 68, 1211–1217 (1975)
Debas HT , Yamagishi T , Dryburgh JR : Motilin enhances gastric emptying of liquids in dogs. Gastroenterology 73, 777–780 (1977)
Defilippi C : Canine small bowel motor activity in response to intraduodenal infusion of nutrient mixtures of increasing caloric load in dogs. Dig. Dis. Sci. 48, 1482–1485 (2003)
Defilippi C , Valenzuela JE : Sham feeding disrupts the interdigestive motility complex in man. Scand. J. Gastroenterol. 16, 977–979 (1981)
De Graf J , Woussen-Colle MC : Effects of sham feeding, bethanechol, and bombesin on somatostatin release in dogs. Am. J. Physiol. 248, G1–G7 (1985)
Deloose E , Janssen P , Depoortere I , Tack J: The migrating motor complex: control mechanisms and its role in health and disease. Nat. Rev. Gastroenterol. Hepatol. 9, 271–285 (2012)
De Wever I , Eeckhout C , Vantrappen G , Hellemans J: Disruptive effect of test meals on interdigestive motor complex in dogs. Am. J. Physiol. 235, E661–E665 (1978)
Dockray GJ : Immunochemical evidence of cholecystokinin-like peptides in brain. Nature 264, 568–570 (1976)
Dockray GJ (1994): Physiology of enteric neuropeptides. In: Physiology of the Gastrointestinal Tract, ed Johnson LR, Elsevier, Amsterdam, pp. 169–209
Dockray GJ (2006): Gastrointestinal hormones: gastrin, cholecystokinin, somatostatin, and ghrelin. In: Physiology of the Gastrointestinal Tract, ed Johnson LR, Elsevier, Amsterdam, pp. 91–120
Dockray GJ , Tracy HJ : Atropine does not abolish cephalic vagal stimulation of gastrin release in dogs. J. Physiol. (Lond.) 306, 473–480 (1980)
Dooley CP , Di Lorenzo C , Valenzuela JE : Variability of migrating motor complex in humans. Dig. Dis. Sci. 37, 723–728 (1992)
Doyle H , Greeley GH Jr , Mate L , Sakamoto T , Townsend CM Jr , Thompson JC : Distribution of neurotensin in canine gastrointestinal tract. Surgery 97, 337–341 (1985)
Dreznik Z , Meininger TA , Barteau JA , Brocksmith D , Soper NJ : Effect of ileal oleate on interdigestive intestinal motility of the dog. Dig. Dis. Sci. 39, 1511–1518 (1994)
Eastwood C , Maubach K , Kirkup AJ , Grundy D : The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum. Neurosci. Lett. 254, 145–148 (1998)
Edelbroek M , Horowitz M , Dent J , Sun WM , Malbert C , Smout A , Akkermans L : Effect of duodenal distention on fasting and postprandial antropyloroduodenal motility in humans. Gastroenterology 106, 583–592 (1994)
Eeckhout C , De Wever I , Peeters T , Hellemans J , Vantrappen G : Role of gastrin and insulin in postprandial disruption of migrating complex in dogs. Am. J. Physiol. 235, E666–E669 (1978)
Eeckhout C , De Wever I , Vantrappen G (1980): Effect of glucose perfusions on the migrating complex of a Thiry-Vella loop. In: Gastrointestinal Motility, ed Christensen J, Raven Press, New York, pp. 289–293
Eeckhout C , De Wever I , Vantrappen G : Intestinal motility after infusion of arachis oil into duodenum and ileum of dogs. Dig. Dis. Sci. 29, 164–170 (1984)
Eeckhout C , De Wever I , Vantrappen G , Janssens J : Local disorganization of interdigestive migrating complex by perfusion of a Thiry-Vella loop. Am. J. Physiol. 238, G509–G513 (1980)
Englander EW , Greeley GH Jr (2006): Postpyloric gastrointestinal peptides. In: Physiology of the Gastrointestinal Tract, ed Johnson LR, Elsevier, Amsterdam, pp. 121–159
Feinle C , Grundy D , Fried M : Modulation of gastric distension-induced sensations by small intestinal receptors. Am. J. Physiol. 280, G51–G57 (2001)
Feurle GE , Baca I , Knauf W : Atropine depresses release of neurotensin and its effect on the exocrine pancreas. Regul. Pept. 4, 75–82 (1982)
Fioramonti J , Buéno L : Hormonal control of gut motility in ruminants and non-ruminants and its nutritional implications. Nutr. Res. Rev. 1, 169–188 (1988)
Fleckenstein P : Migrating electrical spike activity in the fasting human small intestine. Dig. Dis. 23, 769–775 (1978)
Fletcher DR , Shulkes A , Bladin PHD , Hardy KJ : The effect of atropine on bombesin and gastrin releasing peptide stimulated gastrin, pancreatic polypeptide and neurotensin release in man. Regul. Pept. 7, 31–40 (1983)
Fox JET , Daniel EE , Jury J , Track N , Chiu S : Cholinergic control mechanisms for immunoreactive motilin release and motility in the canine duodenum. Can. J. Physiol. Pharmacol. 61, 1042–1049 (1983)
Frigerio B , Ravazola M , Ito S , Buffa R , Capella C , Solcia E , Orci L : Histochemical and ultrastructural identification of neurotensin cells in the dog ileum. Histochemistry 54, 123–131 (1977)
Frijs ML , Johansen B , Djurhuus JC , Gregersen H : Distension-induced duodenal contractions vary with the phases of the canine interdigestive migrating motility complex. Int. J. Surg. Invest. 1, 39–45 (1999)
Fujimiya M , Okumiya K , Yamane T , Maeda T : Distribution of serotonin immunoreactive nerve cells and fibers in the rat gastrointestinal tract. Histochem. Cell. Biol. 107, 105–114 (1997)
Fujino K , Inui A , Asakawa A , Kihara N , Fujimura M , Fujimiya M : Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J. Physiol. (Lond.) 550, 227–240 (2003)
Funakoshi A , Glowniak J , Owyang C , Vinik AI : Evidence for cholinergic and vagal noncholinergic mechanisms modulating plasma motilin-like immunoreactivity. J. Clin. Endocrinol. Metab. 54, 1129–1134 (1982)
Furness JB , Costa M , Keast JR : Choline acetyltransferase and peptide immunoreactivity of submucous neurons in the small intestine of the guinea-pig. Cell Tissue Res. 237, 329–336 (1984)
Galligan JJ , Costa M , Furness JB : Gastrointestinal myoelectric activity in conscious guinea pigs. Am. J. Physiol. 249, G92–G99 (1985)
Gerner T : Pressure responses to OP-CCK compared to CCK-PZ in the antrum and fundus of isolated guinea pig stomachs. Scand. J. Gastroenterol. 14, 73–77 (1979)
Gershon MD : Review article: serotonin receptors and transporters – roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 20(Suppl. 7), 3–14 (2004)
Gilbert WR , Frank BH , Gavin JR , Gingerich RL : Characterization of specific pancreatic polypeptide receptors on basolateral membranes of canine small intestine. Proc. Natl. Acad. Sci. U S A 85, 4745–4749 (1988)
Gill RC , Pilot M-A , Thomas PA , Wingate DL : Organization of fasting and postprandial myoelectric activity in the stomach and duodenum of conscious dogs. Am. J. Physiol. 249, G655–G661 (1985)
Gleysteen JJ , Sarna SK , Myrvik AL : Canine cyclic motor activity of stomach and small bowel: the vagus is not the governor. Gastroenterology 88, 1926–1931 (1985)
Go VLW , Miller LJ : The role of gastrointestinal hormones in the control of postprandial and interdigestive gastrointestinal function. Scand. J. Gastroenterol. 18(Suppl. 82), 135–142 (1983)
Goedert M , Hunter JC , Ninkovic M : Evidence for neurotensin as a non-adrenergic, non-cholinergic neurotransmitter in guinea pig ileum. Nature 311, 59–62 (1984)
Gorard DA , Libby GW , Farthing MJ : 5-hydroxytryptamine and human small intestinal motility: effect of inhibiting 5-hydroxytryptamine uptake. Gut 35, 496–500 (1994)
Gray AC , White PJ , Coupar IM : Characterisation of opioid receptors involved in modulating circular and longitudinal muscle contraction in the rat ileum. Br. J. Pharmacol. 144, 687–694 (2004)
Greenberg GR : Role of vagal integrity in the regulation of postprandial somatostatin-28 and somatostatin-14 in dogs. Can. J. Physiol. Pharmacol. 64, 30 (1986)
Gregersen H , Rittig S , Vinter-Jensen L , Kraglund K : The relation between antral contractile activity and the duodenal component of the migrating motility complex. Scand. J. Gastroenterol. 23(Suppl. 152), 36–41 (1988)
Gregory PC , Miller SJ , Brewer AC : The relation between food intake and abomasal emptying and small intestinal transit time in sheep. Br. J. Nutr. 53, 373–380 (1985)
Grivel M-L , Ruckebusch Y : The propagation of segmental contractions along the small intestine. J. Physiol. (Lond.) 227, 611–625 (1972)
Grossman MI : Integration of neural and hormonal control of gastric secretion. Physiologist 6, 249–257 (1963)
Grundy D : The intestinal mucosa as a target and trigger for enteric reflexes. Gut 47(Suppl. IV), iv44–iv45 (2000)
Gutierrez JG , Chey WY , Dinoso VP : Actions of cholecystokinin and secretin on the motor activity of the small intestine in man. Gastroenterology 67, 35–41 (1974)
Hall KE , Diamant NE , El-Sharkawy TY , Greenberg GR : Effect of pancreatic polypeptide on canine migrating motor complex and plasma motilin. Am. J. Physiol. 245, G178–G185 (1983)
Hall KE , Greenberg GR , El-Sharkawy TY , Diamant NE : Vagal control of migrating motor complex-related peaks in canine plasma motilin, pancreatic polypeptide, and gastrin. Can. J. Physiol. Pharmacol. 61, 1289–1298 (1982)
Hanauer SB : The role of loperamide in gastrointestinal disorders. Rev. Gastroenterol. Disord. 8, 15–20 (2008)
Hansen MB , Arif F , Gregersen H , Bruusgaard H , Wallin L : Effect of serotonin on small intestinal contractility in healthy volunteers. Physiol. Res. 57, 63–71 (2008)
Hasler WL (2006): Small intestinal motility. In: Physiology of the Gastrointestinal Tract, ed Johnson LR, Raven Press, New York, pp. 935–964
He Y , Wang H , Yang DY , Wang CY , Yang LL , Jin C : Differential expression of motilin receptor in various parts of gastrointestinal tract in dogs. Gastroenterol. Res. Pract. 2015, 970940 (2015)
Heel RC , Brogderi RN , Speight TM , Avery GS : Loperamide: a review of its pharmacological properties and therapeutic efficacy in diarrhea. Drugs 15, 33–52 (1978)
Heppell J , Becker JM , Kelly KA , Zinsmeister AR : Postprandial inhibition of canine enteric interdigestive myoelectric complex. Am. J. Physiol. 244, G160–G164 (1983)
Herzig KH , Schon I , Tatemoto K , Ohe Y , Li Y , Folsch UR , Owyang C : Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine. Proc. Natl. Acad. Sci. U S A 93, 7927–7932 (1996)
Himenos S , Tarui S , Kanayama S , Kuroshima T , Shinomura Y , Hayashi C , Tateishi K , Imagawa K , Hashimura E , Hamaoka T : Plasma cholecystokinin responses after ingestion of liquid meal and intraduodenal infusion of fat, amino acids, or hydrochloric acid in man: analysis with region specific radioimmunoassay. Am. J. Gastroenterol. 78, 703–707 (1983)
Hogan JP , Phillipson AT : The rate of flow of digesta and their removal among the digestive tract of the sheep. Br. J. Nutr. 14, 147–155 (1960)
Hoogerwerf WA : Role of the clock genes in gastrointestinal motility. Am. J. Physiol. 299, G549–G555 (2010)
Hostein J , Janssens J , Vantrappen G , Vandeweerd M , Leman G , Peeters TL : Somatostatin induces ectopic activity fronts (AF) of the migrating motor complex (MMC) via a local intestinal mechanism. Gastroenterology 87, 1004–1008 (1984)
Hökfelt T , Elfvin LG , Elde R , Schultzberg M , Goldstein M , Luft R : Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc. Natl. Acad. Sci. U S A 74, 3587–3591 (1977)
Hoyer D , Clarke DE , Fozard JR , Hartig PR , Martin GR , Mylecharane EJ , Saxena PR , Humphrey PPA : VII. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 46, 157–203 (1994)
Husebye E : The patterns of small bowel motility: physiology and implications in organic disease and functional disorders. Neurogastroenterol. Motil. 11, 141–161 (1999)
Inatomi N , Sato F , Marui S , Itoh Z , Omura S : Vagus-dependent and vagus-independent mechanisms of action of the erythromycin derivative EM574 and motilin in dogs. Jpn. J. Pharmacol. 71, 29–38 (1996)
Innis RB , Snyder SH : Distinct cholecystokinin receptors in brain and pancreas. Proc. Natl. Acad. Sci. U S A 77, 6917–6921 (1980)
Itoh Z : Motilin and clinical applications. Peptides 18, 593–608 (1997)
Itoh Z , Aizawa I , Takeuchi S , Honda R , Takahashi I , Mori K (1980): Mechanism by which the interdigestive motor pattern becomes irregular in conscious dogs. In: Gastrointestinal Motility, ed Christensen J, Raven Press, New York, pp. 279–286
Itoh Z , Honda R , Kiwatashi K , Takeuchi S , Aizawa I , Takayanagi R , Couch EF : Motilin-induced mechanical activity in the canine alimentary tract. Scand. J. Gastroenterol. 11(Suppl. 39), 93–110 (1976)
Itoh Z , Mizumoto A , Iwanaga Y , Yoshida N , Torii K , Wakabayashi K : Involvement of 5-hydroxytryptamine 3 receptors in regulation of interdigestive gastric contractions by motilin in the dog. Gastroenterology 100, 901–908 (1991)
Itoh Z , Nakaya M , Suzuki T : Neurohormonal control of gastrointestinal motor activity in conscious dogs. Peptides 2(Suppl. 2), 223–228 (1981)
Itoh Z , Takeuchi S , Aizawa I , Takayanagi R : Effect of synthetic motilin on gastric motor activity in conscious dogs. Am. J. Dig. Dis. 22, 813–819 (1977)
Janssens J , Hellemans J , Adrian TE , Bloom SR , Peeters TL , Christofides N , Vantrappen GR : Pancreatic polypeptide is not involved in the regulation of the migrating motor complex in man. Regul. Pept. 3, 41–49 (1982)
Janssens J , Vantrappen G , Peeters TL , Hellemans J (1983): The activity front (AF) of the migrating motor complex (MMC) of the human stomach (but not of the small intestine) is motilin-dependent. In: Gastrointestinal Motility, eds Labo G, Bortolotti M, Cortina International, Verona, pp. 11–12
Johanson CE , Stopa EG , McMillan PN : The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol. Biol. 686, 101–131 (2011)
Jonkers IJAM , Ledeboer M , Steens J , Smelt AHM , Masclee AAM : Effect of very long chain versus long chain triglycerides on gastrointestinal motility and hormone release in humans. Dig. Dis. Sci. 45, 1719–1726 (2000)
Katayama Y , Ooishi K , Hirai K , Homma T , Noda Y : Excitatory actions of motilin on myenteric neurons of the guinea-pig small intestine. Auton. Neurosci. 118, 88–92 (2005)
Kawamura O , Sekiguchi T , Kusano M , Nishioka T , Itoh Z : Effect of erythromycin on interdigestive gastrointestinal contractile activity and plasma motilin concentration in humans. Dig. Dis. Sci. 38, 870–876 (1983)
Keast JR , Furness JB , Costa M : Somatostatin in human enteric nerves. Distribution and characterization. Cell Tissue Res. 237, 299–308 (1984)
Keinke O , Wulschke S , Ehrlein HJ : Neurotensin slows gastric emptying by a transient inhibition of gastric and prolonged inhibition of duodenal motility. Digestion 34, 281–288 (1986)
Kellum JM , Maxwell RJ , Potter J , Kummerle JF : Motilin’s induction of phasic contractility in canine jejunum is mediated by the luminal release of serotonin. Surgery 100, 445–451 (1986)
Kelly KA (1975): The effect of pentagastrin on canine gastric myoelectric and motor activity. In: Gastrointestinal Hormones, ed Thompson JC, Austin University of Texas Press, Austin, TX, pp. 381–389
Kerlin P , Phillips SF : Variability of motility of the ileum and jejunum in healthy humans. Gastroenterology 82, 694–700 (1982)
Kim D-Y , Camilleri M : Serotonin: a mediator of the brain-gut connection. Am. J. Gastroenterol. 95, 2698–2709 (2000)
Kobayashi RM , Brown M , Vale W : Regional distribution of neurotensin and somatostatin in rat brain. Brain Res. 126, 584–588 (1977)
Kojima M , Hosoda H , Date Y , Nakazato M , Matsuo H , Kangawa K : Ghrelin is a growth hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999)
Konturek SJ , Radecki T , Thor P , Dembiński A : Release of cholecystokinin by amino acids. Proc. Soc. Exp. Biol. Med. 143, 305–309 (1973)
Kumar D , Wingate D , Ruckebusch Y : Circadian variation in the propagation velocity of the migrating motor complex. Gastroenterology 91, 926–930 (1986)
Lang IM , Sarna SK : All intense bursts of rhythmic activity may not be phase III activity. Am. J. Physiol. 252, G592–G593 (1987)
Larsson L-L , Goltermann N , de Magistris L , Rehfeld JF , Schwartz TW : Somatostatin cell processes as pathways for paracrine secretion. Science 205, 1393–1395 (1979)
Larsson L-L , Rehfeld JF : Distribution of gastrin and CCK cells in the rat gastrointestinal tract. Histochemistry 58, 23–31 (1978)
Larsson L-L , Rehfeld JF : Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res. 165, 201–218 (1979)
Ledeboer M , Masclee AA , Coenraad M , Vecht J , Biemond I , Lamers CB : Antroduodenal motility and small bowel transit during continuous intraduodenal or intragastric administration of enteral nutrition. Eur. J. Clin. Invest. 29, 615–623 (1999)
Lee KY , Chang TM , Chey WY : Effect of electrical stimulation of the vagus on plasma motilin concentration in dog. Life Sci. 29, 1093–1097 (1981)
Lee KY , Chang TM , Chey WY : Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in fasting dog. Am. J. Physiol. 245, G547–G553 (1983)
Lee KY , Chey WY , Tai H , Yajima H : Radioimmunoassay of motilin: validation and studies on the relationship between plasma motilin and interdigestive myoelectric activity of the duodenum of dog. Dig. Dis. 23, 789–795 (1978)
Lee KY , Park KJ , Chang TM , Chey WY : Cholinergic role on release and action of motilin. Peptides 4, 375–380 (1983)
Lemoyne M , Wassef R , Tasse D , Trudel L , Poitras P : Motilin and the vagus in dogs. Can. J. Physiol. Pharmacol. 62, 1092–1096 (1984)
Lentle RG , Janssen PWM (2011): The Physical Process of Digestion. Springer Science, New York
Lester GD , Bolton JR : Effect of dietary composition on abomasal and duodenal myoelectrical activity. Res. Vet. Sci. 57, 270–276 (1994)
Levant JA , Kun TL , Jachna J , Sturdevant RAL , Isenberg JI : The effects of graded doses of C-terminal octapeptide of cholecystokinin on small intestinal transit time in man. Dig. Dis. Sci. 19, 207–209 (1974)
Lewis TD , Collins SM , Fox J-AE , Daniel EE : Initiation of duodenal acid-induced motor complexes. Gastroenterology 77, 1217–1224 (1979)
Liddle RA : Cholecystokinin cells. Annu. Rev. Physiol. 59, 221–242 (1997)
Liddle RA , Goldfine ID , Rosen MS , Taplitz RA , Williams JA : Cholecystokinin bioactivity in human plasma: molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Invest. 75, 1144–1152 (1985)
Lin S , Shi YC , Yulyaningsih E , Aljanova A , Zhang L, Macia L, Nguyen AD, Lin EJ, During MJ, Herzog H, Sainsbury A: Critical role of arcuate Y4 receptors and the melanocortin system in pancreatic polypeptide-induced reduction in food intake in mice. PLoS One 4, e8488 (2009)
Lin TM , Chance RE (1978): Spectrum of gastrointestinal actions of bovine PP. In: Gut Hormones, ed Bloom SR, Churchill Livingstone, London, pp. 242–246
Lingenfelser T , Sun W-M , Hebbard GS , Dent J , Horowitz M : Effect of duodenal distension on antropyloroduodenal pressures and perception are modified by hyperglycemia. Am. J. Physiol. 276, G711–G718 (1999)
Lördal M , Hellström PM : Serotonin stimulates migrating myoelectric complex via 5-HT3 receptors dependent on cholinergic pathways in rat small intestine. Neurogastroenterol. Motil. 11, 1–10 (1999)
Lux G , Femppel J , Lederer P , Rösch W , Domschke W : Increased duodenal alkali load associated with the interdigestive migrating myoelectric complex. Acta Hepato-Gastroenterol. 26, 166–169 (1979)
Marik F , Code CF : Control of the interdigestive myoelectric activity in dogs by the vagus nerves and pentagastrin. Gastroenterology 69, 387–395 (1975)
McTigue DM , Rogers RC : Pancreatic polypeptide stimulates gastric motility through a vagal-dependent mechanism in rats. Neurosci. Lett. 188, 93–96 (1995)
Medhus AW , Sandstad O , Bredesen J , Husebye E : Stimulation of the small intestine by nutrients in relation to phase of the migrating motor complex. Scand. J. Gastroenterol. 35, 494–500 (2000)
Merle A , Delagrange P , Renard P , Lesieur D , Cuber JC , Roche M , Pellisier S : Effect of melatonin on motility pattern of the small intestine in rats and its inhibition by melatonin receptor antagonist S 22153. J. Pineal Res. 29, 116–124 (2000)
Meyer JH , Jones RS : Canine pancreatic responses to intestinally perfused fat and products of fat digestion. Am. J. Physiol. 226, 1178–1187 (1974)
Michel MC , Beck-Sickinger A , Cox H , Doods HN , Herzog H , Larkammar D , Quirion R , Schwartz T , Westfall T : XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev. 50, 143–150 (1998)
Miller RJ , Hirning LD (1989): Opioid peptides in the gut. In: Handbook of Physiology. The Gastrointestinal System, ed Schultz SG, American Physiological Society, Bethesda, MD, pp. 631–660
Miller P , Roy A , St-Pierre S , Dagenais M , Lapointe R , Poitras P : Motilin receptors in the human antrum. Am. J. Physiol. 278, G18–G23 (2000)
Miolan JP , Roman C : Discharge of efferent vagal fibers supplying gastric antrum: indirect study by nerve suture technique. Am. J. Physiol. 235, E366–E373 (1978)
Mitznegg P , Bloom SR , Domschke W , Haecki WH , Domschke S , Belohlavek D , Wünsch E , Demling L : Effect of secretin on plasma motilin in man. Gut 18, 468–477 (1977)
Miyano Y , Sakata I , Kuroda K , Aizawa S , Tanaka T , Jogahara T , Kurotani R , Sakai T : The role of the vagus nerve in the migrating motor complex and ghrelin- and motilin-induced gastric contraction in suncus. PLoS One 8, e64777 (2013)
Mochiki E , Satoh M , Tamura T , Haga N , Suzuki H , Mizumoto A , Sakai T , Itoh Z : Endogenous motilin stimulates endogenous release of motilin through cholinergic muscarinic pathways in the dog. Gastroenterology 111, 1456–1464 (1996)
Moller LN , Stidsen CF , Hartmann B , Holst JJ : Somatostatin receptors. Biochim. Biophys. Acta 1616, 1–84 (2003)
Mondal A , Xie Z , Miyano Y , Tsutsui C , Sakata I , Kawamoto Y , Aizawa S , Tanaka T , Oda S-I , Sakai T : Coordination of motilin and ghrelin regulates the migrating motor complex of gastrointestinal motility in Suncus murinus. Am. J. Physiol. 302, G1207–G1215 (2012)
Morgan KG , Schmalz PF , Go VL , Szurszewski JH : Effects of pentagastrin, G17, and G34 on the electrical and mechanical activities of canine antral smooth muscle. Gastroenterology 75, 405–412 (1978)
Mosińska P , Zielińska M , Fichna J : Expression and physiology of opioid receptors in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabet. Obes. 23, 3–10 (2016)
Mukopadhyay A , Thor P , Copeland E , Johnson L , Weisbrodt N : Effect of cholecystokinin on myoelectric activity of small bowel of the dog. Am. J. Physiol. 232, E44–E47 (1977)
Nakajima H , Mochiki E , Zietlow A , Ludwig K , Takahashi T : Mechanism of interdigestive migrating motor complex in conscious dogs. J. Gastroenterol. 45, 506–514 (2010)
Neunlist M , Schemann M : Nutrient-induced changes in the phenotype and function of the enteric nervous system. J. Physiol. (Lond.) 592, 2959–2965 (2014)
Niebel W , Eysselein VE , Singer MV : Pancreatic polypeptide response to a meal before and after cutting the extrinsic nerves of the upper gastrointestinal tract and the pancreas in the dog. Dig. Dis. Sci. 32, 1004–1009 (1987)
Noble F , Wank SA , Crawley JN , Bradwejn J , Seroogy KB , Hamon M , Roques BP : International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol. Rev. 51, 745–781 (1999)
Ooms LA , Degryse AD , Janssen PA : Mechanisms of action of loperamide. Scand. J. Gastroenterol. 96, 145–155 (1984)
Ormsbee HS , Koehler SL , Telford GL : Somatostatin inhibits motilin-induced interdigestive contractile activity in the dog. Dig. Dis. Sci. 23, 781–788 (1978)
Ormsbee III HS , Telford GL , Mason GR : Required neural involvement in control of canine migrating motor complex. Am. J. Physiol. 237, E451–E456 (1979)
Ormsbee III HS , Telford LG , Suter GM , Wilson PD , Mason GR : Mechanism of propagation of canine migrating motor complex – a reappraisal. Am. J. Physiol.