View More View Less
  • 1 “Iuliu Hatieganu” University of Medicine and Pharmacy, Romania
  • 2 “Constantin Papilian” Military Emergency Hospital, Romania
  • 3 “I. Chiricuta” Oncologic Institute, Romania
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Background

Exposure to high altitude in hypobaric hypoxia (HH) is considered to be a physiological oxidative/nitrosative stress. Quercetin (Que) is an effective antioxidant and free radical scavenger against oxidative/nitrosative stress.

Aims

The aim of this study was to investigate the cardioprotective effects of Que in animals exposed to intermittent HH (IHH) and therefore exposed to oxidative/nitrosative stress.

Materials and methods

Wistar albino male rats were exposed to short-term (2 days) or long-term (4 weeks; 5 days/week) IHH in a hypobaric chamber (5,500 m, 8 h/day, 380 mmHg, 12% O2, and 88% N2). Half of the animals received natural antioxidant Que (body weight: 30 mg/kg) daily before each IHH exposure and the remaining rats received vehicle (carboxymethylcellulose solution). Control rats were kept under normobaric normoxia (Nx) and treated in a corresponding manner. One day after the last exposure to IHH, we measured the cardiac hypoxia-induced oxidative/nitrosative stress biomarkers: the malondialdehyde (MDA) level and protein carbonyl (PC) content, the activity of some antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)], the nitrite plus nitrate (NOx) production, and the inducible nitric oxide synthase (iNOS) protein expression.

Results

Heart tissue MDA and PC levels, NOx level, and iNOS expression of IHH-exposed rats had increased, and SOD and CAT activities had decreased compared with those of the Nx-exposed rats (control groups). MDA, CP, NOx, and iNOS levels had decreased in Que-treated IHH-exposed rats compared with IHH-exposed rats (control groups). However, Que administration increased SOD and CAT activities of the heart tissue in the IHH-exposed rats.

Conclusion

HH exposure increases oxidative/nitrosative stress in heart tissue and Que is an effective cardioprotective agent, which further supports the oxidative cardiac dysfunction induced by hypoxia.

  • 1.

    Aktan F : iNOS-mediated nitric oxide production and its regulation. Life Sci. 75, 639653 (2004)

  • 2.

    Annapurna A , Reddy CS , Akondi RB , Rao SR : Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J. Pharm. Pharmacol. 61, 13651374 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bakhshaeshi M , Khaki A , Fathiazad F , Khaki AA , Ghadamkheir E : Anti-oxidative role of quercetin derived from Allium cepa on aldehyde oxidase (OX-LDL) and hepatocytes apoptosis in streptozotocin-induced diabetic rat. Asian Pac. J. Trop. Biomed. 2, 528531 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Boots AW , Haenen GR , Bast A : Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol. 585, 325337 (2008)

  • 5.

    Chandel NS , Maltepe E , Goldwasser E , Mathieu CE , Simon MC , Schumacker PT : Mitchondrial reactive species trigger hypoxia induced transcription. Proc. Natl. Acad. Sci. U. S. A. 95, 1171511720 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Chen YW , Chou HC , Lin ST , Chen YH , Chang YJ , Chen L , Chan HL : Cardioprotective effects of quercetin in cardiomyocyte under ischemia/reperfusion injury. Evid. Based Complement. Alternat. Med. 2013, 364519 (2013)

    • Search Google Scholar
    • Export Citation
  • 7.

    Chis IC , Baltaru D , Marton A , Maier M , Muresan A , Clichici S : Effects of quercetin and chronic (training) exercise on oxidative stress status in animals with streptozotocin-induced diabetes. Bull. USAMV-CN Vet. Med. 70, 3139 (2013)

    • Search Google Scholar
    • Export Citation
  • 8.

    Conti M , Morand PC , Levillain P : Improved fluorimetric determination of malonaldehyde. Clin. Chem. 37, 12731275 (1991)

  • 9.

    Daff S : NO synthase: structure and mechanisms. Nitric Oxide 23, 111 (2010)

  • 10.

    Di Naso FC , Simoes Dias A , Porawski M , Marroni NA : Exogenous superoxide dismutase: action on liver oxidative stress in animals with streptozotocin-induced diabetes. Exp. Diab. Res. 2011, 754132 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Dias AS , Porawski M , Alonso M , Marroni N , Collado PS , González-Gallego J : Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS over expression in liver of streptozotocin-induced diabetic rats. J. Nutr. 135, 22992304 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Dosek A , Ohmo H , Acs Z , Taylor AW , Radak Z : High altitude and oxidative stress. Respir. Physiol. Neurobiol. 158, 128131 (2007)

  • 13.

    Droge W : Free radicals in the physiological control and cell function. Physiol. Rev. 82, 4795 (2002)

  • 14.

    Dumitrovici A , Bolfa PF , Mureşan A , Maier M , Chiş IC : Short-term versus long-term intermittent hypobaric hypoxia on cardiac fibrosis and cardioprotective effects of natural antioxidants supplementation in rat hearts. Bull. USAMV-CN Vet. Med. 70, 5665 (2013)

    • Search Google Scholar
    • Export Citation
  • 15.

    Dumitrovici A , Chiş IC , Mureşan A , Marton A , Moldovan R , Vlad D , Borza G , Bolfa P : Quercetin, Lycium barbarum and Chitosan reverse the effects of hypobaric hypoxia and exert cardioprotective effects in rats. Fiziologia (Physiology) 23, 1822 (2013)

    • Search Google Scholar
    • Export Citation
  • 16.

    Farías JG , Zepeda AB , Calaf GM : Melatonin protects the heart, lungs and kidneys from oxidative stress under intermittent hypobaric. Biol. Res. 45, 8185 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Flohe L , Becker R , Brigelius R , Lengfelder E , Ötting F (1990): Convenient assays for superoxide dismutase. In: CRC Handbook of Free Radicals and Antioxidants in Biomedicine, vol III, ed Miquel J, CRC Press, Boca Raton, pp. 287293

    • Search Google Scholar
    • Export Citation
  • 18.

    Formagio ASN , Kassuya CAL , Neto FF , Volobuff CRF , Iriguchi EKK , Vieira M , Foglio MA : The flavonoid content and antiproliferative, hypoglycaemic, anti-inflammatory and free radical scavenging activities of Annona dioica St. Hill. BMC Complement. Altern. Med. 13, 1422 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hanasaki Y , Ogawa S , Fukui S : The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med. 16, 845850 (1994)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jeong SM , Kang MJ , Choi HN , Kim JH , Kim JI : Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract. 6, 201207 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Jo HY , Kim Y , Nam SY , Lee BJ , Kim YB , Yun YW , Ahn B : The inhibitory effect of quercetin gallate on iNOS expression induced by lipopolysaccharide in Balb/c mice. J. Vet. Sci. 9, 267272 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Jung F , Palmer LA , Zhou N , Johns RA : Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ. Res. 86, 319325 (2000)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kaluz S , Kaluzova M , Stanbridge EJ : Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin. Chim. Acta 395, 613 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kanter M , Aktas C , Erboga M : Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food Chem. Toxicol. 50, 719725 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lee SD , Kuo WW , Wu CH , Lin YM , Lin JA , Lu MC , Yang AL , Liu JY , Wang SG , Liu CJ , Chen LM , Huang CY : Effects of short- and long-term hypobaric hypoxia on Bcl2 family in rat heart. Int. J. Cardiol. 108, 376384 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lin YM , Huang SK , Wang HF , Chen LM , Tsai FJ , Hsu HH , Kuo CH , Wang PS , Huang CY , Lee SD : Short-term versus long-term intermittent hypobaric hypoxia on cardiac fibrosis and Fas death receptor dependent apoptotic pathway in rat hearts. Chin. J. Physiol. 51, 308316 (2008)

    • Search Google Scholar
    • Export Citation
  • 27.

    Martinez-Flores S , Gutierez MB , Sanchez-Campos S , Gonzales-Gallego J , Tunon MJ : Quercetin prevents nitric oxide production and nuclear factor kappa B activation in interleukin-1β-activated rat hepatocytes. J. Nutr. 135, 13591365 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pippenger CE , Browne RW , Armstrong D (1998): Regulatory antioxidant enzymes. In: Free radical and antioxidant protocols. Methods in molecular biology, vol 108, ed Armstrong D, Humana Press, Totowa, pp. 299313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Reznick AZ , Packer L : Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233, 347357 (1994)

    • Search Google Scholar
    • Export Citation
  • 30.

    Romero RM , Canuelo A , Siles E , Oliver FJ , Lara ME : Nitric oxide modulates hypoxia-inducible factor-1 and poly (ADP-ribose) polymerase-1 cross talk in response to hypobaric hypoxia. J. Appl. Physiol. 112, 816823 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Rus A , Peinado MA , Castro L , Del Moral MI : Lung eNOS and iNOS are reoxygenation time-dependent upregulated after acute hypoxia. Anat. Rec. (Hoboken) 293, 10891098 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Sarkar A , Angeline MS , Anand K , Ambasta RK , Kumar P : Naringenin and quercetin reverse the effect of hypobaric hypoxia and elicit neuroprotective response in the murine model. Brain Res. 24, 5970 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Singh M , Thomas P , Shukla D , Tulsawani R , Saxena S , Bansal A : Effect of subchronic hypobaric hypoxia on oxidative stress in rat heart. Appl. Biochem. Biotechnol. 169, 24052019 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Tang D , Dong Y , Ren H , Li L , He C : A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 8, 4 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Titherage MA (1998): The enzymatic measurement of nitrate and nitrite. In: Nitric oxide protocols. Methods in molecular biology, vol 100, ed Titherage MA, Humana Press, Totowa, pp. 8391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Wang ZH , Cai XL , Wu L , Yu Z , Liu JL , Zhou ZN , Liu J , Yang HT : Mitochondrial energy metabolism plays a critical role in the cardioprotection afforded by intermittent hypobaric hypoxia. Exp. Physiol. 97, 11051118 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Wang ZH , Chen YX , Zhang CM , Wu L , Yu Z , Cai XL , Guan Y , Zhou ZN , Yang HT : Intermittent hypobaric hypoxia improves postischemic recovery of myocardial contractile function via redox signaling during early reperfusion. Am. J. Physiol. Heart. Circ. Physiol. 301, 169516705 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Zhang Y , Yang HT , Zhou ZN : Cardioprotection of intermittent hypoxia. Acta Physiol. Sin. 59, 601613 (2007)

  • 39.

    Zhang Y , Zhong N , Zhou ZN : Effects of chronic intermittent hypobaric hypoxia on the L-type calcium current in rat ventricular myocytes. High Alt. Med. Biol. 11, 6167 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Zhong N , Zhang Y , Zhu HF , Wang JC , Fang QZ , Zhou ZN : Myocardial capillary angiogenesis and coronary flow in ischemia tolerance rat by adaptation to intermittent high altitude hypoxia. Acta Pharmacol. Sin. 23, 305310 (2002)

    • Search Google Scholar
    • Export Citation
  • 41.

    Xie QW , Kashiwabara Y , Nathan C : Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269, 47054708 (1994)

    • Search Google Scholar
    • Export Citation
  • 42.

    Yin X , Zheng Y , Liu Q , Cai J , Cai L : Cardiac response to chronic intermittent hypoxia with a transition from adaptation to maladaptation: the role of hydrogen peroxide. Oxid. Med. Cell. Longev. 2012, 569520 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

  • Impact Factor (2019): 1.410
  • Scimago Journal Rank (2019): 0.267
  • SJR Hirsch-Index (2019): 27
  • SJR Quartile Score (2019): Q4 Physiology (medical)
  • Impact Factor (2018): 1.113
  • Scimago Journal Rank (2018): 0.262
  • SJR Hirsch-Index (2018): 26
  • SJR Quartile Score (2018): Q4 Physiology (medical)

Language: English

Founded in 1950
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 107
Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Social Science Citation Index

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Rosivall, László

Managing Editor(s): Bartha, Jenő; Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor; Radák, Zsolt

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

      Benedek, György (Szeged)
      Benyó, Zoltán (Budapest)
      Boros, Mihály (Szeged)
      Chernoch, László (Debrecen)
      Détári, László (Budapest)
      Hamar, János (Budapest)
      Hantos, Zoltán (Szeged)
      Hunyady, László (Budapest)
      Jancsó, Gábor (Szeged)
      Karádi, Zoltán (Pécs)
      Kovács, László (Debrecen)
      Palkovits, Miklós (Budapest)
      Papp, Gyula (Szeged)
      Pavlik, Gábor (Budapest)
      Spät, András (Budapest)
      Szabó, Gyula (Szeged)
      Szelényi, Zoltán (Pécs)
      Szollár, Lajos (Budapest)
      Szücs, Géza (Debrecen)
      Telegdy, Gyula (Szeged)
      Toldi, József (Szeged)
      Tósaki, Árpád (Debrecen)

 

International Editorial Board

      R. Bauer (Jena)
      W. Benjelloun (Rabat)
      A. W. Cowley Jr. (Milwaukee)
      D. Djuric (Belgrade)
      C. Fry (London)
      S. Greenwald (London)
      O. Hänninen (Kuopio)
      H. G. Hinghofer-Szalkay (Graz)
      Gy. Kunos (Richmond)
      M. Mahmoudian (Tehran)
      T. Mano (Seki, Gifu)
      G. Navar (New Orleans)
      H. Nishino (Nagoya)
      O. Petersen (Liverpool)
      U. Pohl (Münich)
      R. S. Reneman (Maastricht)
      A. Romanovsky (Phoenix)
      G. M. Rubanyi (Richmond)
      T. Sakata (Oita)
      A. Siddiqui (Karachi)
      Cs. Szabo (Beverly)
      E. Vicaut (Paris)
      N. Westerhof (Amsterdam)
      L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Physiology International
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu