Authors:
JJ McCormick Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA

Search for other papers by JJ McCormick in
Current site
Google Scholar
PubMed
Close
,
TA VanDusseldorp Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA

Search for other papers by TA VanDusseldorp in
Current site
Google Scholar
PubMed
Close
,
CG Ulrich Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA

Search for other papers by CG Ulrich in
Current site
Google Scholar
PubMed
Close
,
RL Lanphere Department of Kinesiology & Health Promotion, University of Kentucky, Lexington, KY, USA

Search for other papers by RL Lanphere in
Current site
Google Scholar
PubMed
Close
,
K Dokladny Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA

Search for other papers by K Dokladny in
Current site
Google Scholar
PubMed
Close
,
PL Mosely Departments of Medicine and Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Search for other papers by PL Mosely in
Current site
Google Scholar
PubMed
Close
, and
CM Mermier Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, USA

Search for other papers by CM Mermier in
Current site
Google Scholar
PubMed
Close
Restricted access

Autophagy is a lysosome degradation pathway through which damaged organelles and macromolecules are degraded within the cell. A decrease in activity of the autophagic process has been linked to several age-associated pathologies, including triglyceride accumulation, mitochondrial dysfunction, muscle degeneration, and cardiac malfunction. Here, we examined the differences in the autophagic response using autophagy-inducer rapamycin (Rapa) in peripheral blood mononuclear cells (PBMCs) from young (21.8 ± 1.9 years) and old (64.0 ± 3.7 years) individuals. Furthermore, we tested the interplay between the heat shock response and autophagy systems. Our results showed a significant increase in LC3-II protein expression in response to Rapa treatment in young but not in old individuals. This was associated with a decreased response in MAP1LC3B mRNA levels, but not SQSTM1/p62. Furthermore, HSPA1A mRNA was upregulated only in young individuals, despite no differences in HSP70 protein expression. The combined findings suggest a suppressed autophagic response following Rapa treatment in older individuals.

  • 1.

    Alevy YG , Patel AC , Romero AG , Patel DA , Tucker J , Roswit WT , Miller CA , Heier RF , Byers DE , Brett TJ , Holtzman MJ : IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J. Clin. Invest. 122, 45554568 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Alvers AL , Wood MS , Hu D , Kaywell AC , Dunn WA, Jr , Aris JP : Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5, 847849 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bjedov I , Toivonen JM , Kerr F , Slack C , Jacobson J , Foley A , Partridge L : Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 3546 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Canto C , Jiang LQ , Deshmukh AS , Mataki C , Coste A , Lagouge M , Zierath JR , Auwerx J : Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213219 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Coffey EE , Beckel JM , Laties AM , Mitchell CH : Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263, 111124 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Colman RJ , Anderson RM , Johnson SC , Kastman EK , Kosmatka KJ , Beasley TM , Allison DB , Cruzen C , Simmons HA , Kemnitz JW , Weindruch R : Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201204 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Craig EA , Weissman JS , Horwich AL : Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 78, 365372 (1994)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Cuervo AM : Autophagy: many paths to the same end. Mol. Cell. Biochem. 263, 5572 (2004)

  • 9.

    Cuervo AM : Autophagy and aging: keeping that old broom working. Trends Genet. 24, 604612 (2008)

  • 10.

    Dokladny K , Myers OB , Moseley PL : Heat shock response and autophagy – cooperation and control. Autophagy 11, 20013 (2015)

  • 11.

    Dokladny K , Zuhl MN , Mandell M , Bhattacharya D , Schneider S , Deretic V , Moseley PL : Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J. Biol. Chem. 288, 1495914972 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Donati A , Cavallini G , Paradiso C , Vittorini S , Pollera M , Gori Z , Bergamini E : Age-related changes in the regulation of autophagic proteolysis in rat isolated hepatocytes. J. Gerontol. A Biol. Sci. Med. Sci. 56, B288B293 (2001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Donati A , Recchia G , Cavallini G , Bergamini E : Effect of aging and anti-aging caloric restriction on the endocrine regulation of rat liver autophagy. J. Gerontol. A Biol. Sci. Med. Sci. 63, 550555 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Droge W , Kinscherf R : Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid. Redox Signal. 10, 661678 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Duncan RF : Rapamycin conditionally inhibits Hsp90 but not Hsp70 mRNA translation in Drosophila: implications for the mechanisms of Hsp mRNA translation. Cell Stress Chaperones 13, 143155 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Fink RI , Kolterman OG , Griffin J , Olefsky JM : Mechanisms of insulin resistance in aging. J. Clin. Invest. 71, 15231535 (1983)

  • 17.

    Hansen M , Chandra A , Mitic LL , Onken B , Driscoll M , Kenyon C : A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hara T , Nakamura K , Matsui M , Yamamoto A , Nakahara Y , Suzuki-Migishima R , Yokoyama M , Mishima K , Saito I , Okano H , Mizushima N : Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885889 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Jin S : Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2, 8084 (2006)

  • 20.

    Kabeya Y , Mizushima N , Ueno T , Yamamoto A , Kirisako T , Noda T , Kominami E , Ohsumi Y , Yoshimori T : LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 57205728 (2000)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kenyon CJ : The genetics of ageing. Nature 464, 504512 (2010)

  • 22.

    Kirisako T , Baba M , Ishihara N , Miyazawa K , Ohsumi M , Yoshimori T , Noda T , Ohsumi Y : Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147, 435446 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Klionsky DJ , Abdelmohsen K , Abe A , Abedin MJ , Abeliovich H , Acevedo Arozena A... , Zughaier SM : Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1222 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kouroku Y , Fujita E , Tanida I , Ueno T , Isoai A , Kumagai H , Ogawa S , Kaufman RJ , Kominami E , Momoi T : ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14, 230239 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lapierre LR , Kumsta C , Sandri M , Ballabio A , Hansen M : Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11, 867880 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lee JH , Budanov AV , Park EJ , Birse R , Kim TE , Perkins GA , Ocorr K , Ellisman MH , Bodmer R , Bier E , Karin M : Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327, 12231228 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lemasters JJ : Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8, 35 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Levine B , Klionsky DJ : Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463477 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Levine B , Kroemer G : Autophagy in the pathogenesis of disease. Cell 132, 2742 (2008)

  • 30.

    Liang P , MacRae TH : Molecular chaperones and the cytoskeleton. J. Cell Sci. 110, 14311440 (1997)

  • 31.

    Lipinski MM , Zheng B , Lu T , Yan Z , Py BF , Ng A , Xavier RJ , Li C , Yankner BA , Scherzer CR , Yuan J : Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 107, 1416414169 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Mayer MP , Bukau B : Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670684 (2005)

  • 33.

    Meijer AJ , Codogno P : Macroautophagy: protector in the diabetes drama? Autophagy 3, 523526 (2007)

  • 34.

    Melendez A , Talloczy Z , Seaman M , Eskelinen EL , Hall DH , Levine B : Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 13871391 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Mizushima N , Yoshimori T , Levine B : Methods in mammalian autophagy research. Cell 140, 313326 (2010)

  • 36.

    Nakai A , Yamaguchi O , Takeda T , Higuchi Y , Hikoso S , Taniike M , Omiya S , Mizote I , Matsumura Y , Asahi M , Nishida K , Hori M , Mizushima N , Otsu K : The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619624 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Nara A , Mizushima N , Yamamoto A , Kabeya Y , Ohsumi Y , Yoshimori T : SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. Cell Struct. Funct. 27, 2937 (2002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ohsumi Y , Mizushima N : Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15, 231236 (2004)

  • 39.

    Ploumi C , Daskalaki I , Tavernarakis N : Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 284, 183195 (2017)

  • 40.

    Rouschop KM , van den Beucken T , Dubois L , Niessen H , Bussink J , Savelkouls K , Keulers T , Mujcic H , Landuyt W , Voncken JW , Lambin P , van der Kogel AJ , Koritzinsky M , Wouters BG : The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127141 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Rubinsztein DC , Marino G , Kroemer G : Autophagy and aging. Cell 146, 682695 (2011)

  • 42.

    Simonsen A , Cumming RC , Brech A , Isakson P , Schubert DR , Finley KD : Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176184 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Tan CC , Yu JT , Tan MS , Jiang T , Zhu XC , Tan L : Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol. Aging 35, 941957 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Toth ML , Sigmond T , Borsos E , Barna J , Erdelyi P , Takacs-Vellai K , Orosz L , Kovacs AL , Csikos G , Sass M , Vellai T : Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4, 330338 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Yamamoto A , Tagawa Y , Yoshimori T , Moriyama Y , Masaki R , Tashiro Y : Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 3342 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 48 1 4
Jan 2024 92 0 0
Feb 2024 31 0 0
Mar 2024 27 2 0
Apr 2024 42 0 0
May 2024 27 0 0
Jun 2024 0 0 0