Right- and left-side-dominant individuals reveal target-matching asymmetries between joints of the dominant and non-dominant upper limbs. However, it is unclear if such asymmetries are also present in lower limb’s joints. We hypothesized that right-side-dominant participants perform knee joint target-matching tasks more accurately with their non-dominant leg compared to left-side-dominant participants.
Participants performed position sense tasks using each leg by moving each limb separately and passively on an isokinetic dynamometer.
Side-dominance affected (p < 0.05) knee joint absolute position errors only in the non-dominant leg but not in the dominant leg: right-side-dominant participants produced less absolute position errors (2.82° ± 0.72°) with the non-dominant leg compared to left-side-dominant young participants (3.54° ± 0.33°).
In conclusion, right-side-dominant participants tend to perform a target-matching task more accurately with the non-dominant leg compared to left-side-dominant participants. Our results extend the literature by showing that right-hemisphere specialization under proprioceptive target-matching tasks may be not evident at the lower limb joints.
Adamo DE , Alexander NB , Brown SH : The influence of age and physical activity on upper limb proprioceptive ability. J. Aging Phys. Act. 17, 272–293 (2009)
Bullock-Saxton JE , Wong WJ , Hogan N : The influence of age on weight-bearing joint reposition sense of the knee. Exp. Brain Res. 136, 400–406 (2001)
Cohen J (1988): Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates, Hillsdale, NJ
Dieling S , van der Esch M , Janssen TW : Knee joint proprioception in ballet dancers and non-dancers. J. Dance Med. Sci. 18, 143–148 (2014)
Elias LJ , Bryden MP : Footedness is a better predictor of language lateralisation than handedness. Laterality 3, 41–51 (1998)
Faul F , Erdfelder E , Lang AG , Buchner A : G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007)
Gandevia SC , Refshauge KM , Collins DF : Proprioception: peripheral inputs and perceptual interactions. Adv. Exp. Med. Biol. 508, 61–68 (2002)
Goble DJ , Brown SH : Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement. Exp. Brain Res. 180, 693–704 (2007)
Goble DJ , Brown SH : Upper limb asymmetries in the matching of proprioceptive versus visual targets. J. Neurophysiol. 99, 3063–3074 (2008)
Goble DJ , Lewis CA , Brown SH : Upper limb asymmetries in the utilization of proprioceptive feedback. Exp. Brain Res. 168, 307–311 (2006)
Goble DJ , Noble BC , Brown SH : Proprioceptive target matching asymmetries in left-handed individuals. Exp. Brain Res. 197, 403–408 (2009)
Gonzalez CL , Goodale MA : Hand preference for precision grasping predicts language lateralization. Neuropsychologia 47, 3182–3189 (2009)
Goodale MA : Hemispheric differences in motor control. Behav. Brain Res. 30, 203–214 (1988)
Hall LA , McCloskey DI : Detections of movements imposed on finger, elbow and shoulder joints. J. Physiol. 335, 519–533 (1983)
Han J , Anson J , Waddington G , Adams R : Proprioceptive performance of bilateral upper and lower limb joints: side-general and site-specific effects. Exp. Brain Res. 226, 313–323 (2013)
Hatta T : Handedness and the brain: a review of brain-imaging techniques. Magn. Reson. Med. Sci. 6, 99–112 (2007)
Jung P , Baumgärtner U , Bauermann T , Magerl W , Gawehn J , Stoeter P , Treede RD : Asymmetry in the human primary somatosensory cortex and handedness. Neuroimage 19, 913–923 (2003)
Kurian G , Sharma NK , Santhakumari K : Left-arm dominance in active positioning. Percept. Mot. Skills 68, 1312–1314 (1989)
Kuypers HG : A new look at the organization of the motor system. Prog. Brain Res. 57, 381–403 (1982)
Legon W , Dionne JK , Meehan SK , Staines WR : Non-dominant hand movement facilitates the frontal N30 somatosensory evoked potential. BMC Neurosci. 11, 112 (2010)
Meador KJ , Ray PG , Day L , Ghelani H , Loring DW : Physiology of somatosensory perception: cerebral lateralization and extinction. Neurology 51, 721–727 (1998)
Müller F , Kunesch E , Binkofski F , Freund HJ : Residual sensorimotor functions in a patient after right-sided hemispherectomy. Neuropsychologia 29, 125–145 (1991)
Naito E , Roland PE , Grefkes C , Choi HJ , Eickhoff S , Geyer S , Zilles K , Ehrsson HH : Dominance of the right hemisphere and role of area 2 in human kinesthesia. J. Neurophysiol. 93, 1020–1034 (2005)
Naughton J , Adams R , Maher C : Discriminating overhead points of contact after arm raising. Percept. Mot. Skills 95, 1187–1195 (2002)
Nishizawa S : Different pattern of hemisphere specialization between identical kinesthetic spatial and weight discrimination tasks. Neuropsychologia 29, 305–312 (1991)
Oldfield RC : The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9, 97–113 (1971)
Perelle IB , Ehrman L : On the other hand. Behav. Genet. 35, 343–350 (2005)
Proske U , Gandevia SC : The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012)
Roy EA , MacKenzie C : Handedness effects in kinesthetic spatial location judgements. Cortex 14, 250–258 (1978)
Sainburg RL : Convergent models of handedness and brain lateralization. Front. Psychol. 5, 1092 (2014)
Sainburg RL : Evidence for a dynamic-dominance hypothesis of handedness. Exp. Brain Res. 142, 241–258 (2002)
Sainburg RL : Handedness: Differential specializations for control of trajectory and position. Exerc. Sport Sci. Rev. 33, 206–213 (2005)
Sartarelli M : Handedness, earnings, ability and personality. Evidence from the lab. PLoS One 11, e0164412 (2016)
Schmidt L , Artinger F , Stumpf O , Kerkhoff G : Differential effects of galvanic vestibular stimulation on arm position sense in right- vs. left-handers. Neuropsychologia 51, 893–899 (2013)
Schmidt L , Depper L , Kerkhoff G : Effects of age, sex and arm on the precision of arm position sense-left-arm superiority in healthy right-handers. Front. Hum. Neurosci. 7, 915 (2013)
Scott SH , Loeb GE : The computation of position sense from spindles in mono- and multiarticular muscles. J. Neurosci. 14, 7529–7540 (1994)
Sörös P , Knecht S , Imai T , Gürtler S , Lütkenhöner B , Ringelstein EB , Henningsen H : Cortical asymmetries of the human somatosensory hand representation in right- and left-handers. Neurosci. Lett. 271, 89–92 (1999)
Spry S , Zebas C , Visser M (1993): What is leg dominance? In: 11 International Symposium on Biomechanics in Sports ISBS – Conference Proceedings Archive, eds Hamill J, Derrick TR, Elliott EH, pp. 165–168. Available at: https://ojs.ub.uni-konstanz.de/cpa/article/view/1700
Stone KD , Bryant DC , Gonzalez CL : Hand use for grasping in a bimanual task: evidence for different roles? Exp. Brain Res. 224, 455–467 (2013)
Tecchio F , Rossini PM , Pizzella V , Cassetta E , Romani GL : Spatial properties and interhemispheric differences of the sensory hand cortical representation: a neuromagnetic study. Brain Res. 767, 100–108 (1997)
Tran US , Stieger S , Voracek M : Evidence for general right-, mixed-, and left-sidedness in self-reported handedness, footedness, eyedness, and earedness, and a primacy of footedness in a large-sample latent variable analysis. Neuropsychologia 62, 220–232 (2014)
Triggs WJ , Calvanio R , Levine M : Transcranial magnetic stimulation reveals a hemispheric asymmetry correlate of intermanual differences in motor performance. Neuropsychologia 35, 1355–1363 (1997)
Volkmann J , Schnitzler A , Witte OW , Freund H : Handedness and asymmetry of hand representation in human motor cortex. J. Neurophysiol. 79, 2149–2154 (1998)
Vuoksimaa E , Koskenvuo M , Rose RJ , Kaprio J : Origins of handedness: a nationwide study of 30,161 adults. Neuropsychologia 47, 1294–1301 (2009)
Zazulak BT , Hewett TE , Reeves NP , Goldberg B , Cholewicki J : The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am. J. Sports Med. 35, 368–373 (2007)