Authors:
PD Loprinzi Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS, USA

Search for other papers by PD Loprinzi in
Current site
Google Scholar
PubMed
Close
,
P Ponce Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS, USA

Search for other papers by P Ponce in
Current site
Google Scholar
PubMed
Close
, and
E Frith Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, Oxford, MS, USA

Search for other papers by E Frith in
Current site
Google Scholar
PubMed
Close
Restricted access

Emerging research demonstrates that exercise is favorably associated with several cognitive outcomes, including episodic memory function. The majority of the mechanistic work describing the underlying mechanisms of this effect has focused on chronic exercise engagement. Such mechanisms include, e.g., chronic exercise-induced neurogenesis, gliogenesis, angiogenesis, cerebral circulation, and growth factor production. Less research has examined the mechanisms through which acute (vs. chronic) exercise subserves episodic memory function. The purpose of this review is to discuss these potential underlying mechanisms, which include, e.g., acute exercise-induced (via several pathways, such as vagus nerve and muscle spindle stimulation) alterations in neurotransmitters, synaptic tagging/capturing, associativity, and psychological attention.

  • 1.

    Abraham WC , Bear MF : Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126130 (1996)

  • 2.

    Ahmed T , Frey JU , Korz V : Long-term effects of brief acute stress on cellular signaling and hippocampal LTP. J. Neurosci. 26, 39513958 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Almaguer-Melian W , Bergado-Rosado J , Pavon-Fuentes N , Alberti-Amador E , Merceron-Martinez D , Frey JU : Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats. Proc. Natl. Acad. Sci. U. S. A. 109, 953958 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Alves CR , Tessaro VH , Teixeira LA , Murakava K , Roschel H , Gualano B , Takito MY : Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Percept. Mot. Skills. 118, 6372 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Antonova I , Arancio O , Trillat AC , Wang HG , Zablow L , Udo H , Kandel ER , Hawkins RD : Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation. Science 294, 15471550 (2001)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ballarini F , Moncada D , Martinez MC , Alen N , Viola H : Behavioral tagging is a general mechanism of long-term memory formation. Proc. Natl. Acad. Sci. U. S. A. 106, 1459914604 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Barco A , Lopez de Armentia M , Alarcon JM : Synapse-specific stabilization of plasticity processes: the synaptic tagging and capture hypothesis revisited 10 years later. Neurosci. Biobehav. Rev. 32, 831851 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Barnes JN : Exercise, cognitive function, and aging. Adv. Physiol. Educ. 39, 5562 (2015)

  • 9.

    Bartsch T , Dohring J , Rohr A , Jansen O , Deuschl G : CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proc. Natl. Acad. Sci. U. S. A. 108, 1756217567 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Berumen LC , Rodriguez A , Miledi R , Garcia-Alcocer G : Serotonin receptors in hippocampus. ScientificWorldJournal 2012, 823493 (2012)

  • 11.

    Carlson NR , Birkett MA (2017): Learning and memory. In: Physiology of Behavior, eds Carlson NR, Birkett MA, Pearson Education, Boston, p. 442

    • Search Google Scholar
    • Export Citation
  • 12.

    Castle M , Comoli E , Loewy AD : Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 134, 657669 (2005)

  • 13.

    Chen C , Nakagawa S , An Y , Ito K , Kitaichi Y , Kusumi I : The exercise-glucocorticoid paradox: how exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front. Neuroendocrinol. 44, 83102 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Chowdhury R , Guitart-Masip M , Bunzeck N , Dolan RJ , Duzel E : Dopamine modulates episodic memory persistence in old age. J. Neurosci. 32, 1419314204 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Crush EA , Loprinzi PD : Dose-response effects of exercise duration and recovery on cognitive functioning. Percept. Mot. Skills. 124, 11641193 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Daffner KR , Scinto LF , Weitzman AM , Faust R , Rentz DM , Budson AE , Holcomb PJ : Frontal and parietal components of a cerebral network mediating voluntary attention to novel events. J. Cogn. Neurosci. 15, 294313 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Dehaene S , Kerszberg M , Changeux JP : A neuronal model of a global workspace in effortful cognitive tasks. Proc. Natl. Acad. Sci. U. S. A. 95, 1452914534 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Dief AE , Samy DM , Dowedar FI : Impact of exercise and vitamin B1 intake on hippocampal brain-derived neurotrophic factor and spatial memory performance in a rat model of stress. J. Nutr. Sci. Vitaminol. (Tokyo) 61, 17 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Dietrich A , Audiffren M : The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci. Biobehav. Rev. 35, 13051325 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Enders H , Cortese F , Maurer C , Baltich J , Protzner AB , Nigg BM : Changes in cortical activity measured with EEG during a high-intensity cycling exercise. J. Neurophysiol. 115, 379388 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Engert F , Bonhoeffer T : Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 6670 (1999)

  • 22.

    Fingelkurts AA , Fingelkurts AA (2015): Attentional state: from automatic detection to willful focused concentration. In: Attention and Meaning: The Attentional Basis of Meaning, eds Marchetti G, Benedetti G, Alharbi A, Nova Science Publishers, Hauppauge, pp. 133150

    • Search Google Scholar
    • Export Citation
  • 23.

    Foley JO , DuBois FS : Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers. J. Comp. Neurol. 67, 4967 (1937)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Frey U , Morris RG : Synaptic tagging and long-term potentiation. Nature 385, 533536 (1997)

  • 25.

    Frith E , Sng E , Loprinzi PD : Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. Eur. J. Neurosci. 46, 25572564 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Furini CR , Myskiw JC , Schmidt BE , Marcondes LA , Izquierdo I : D1 and D5 dopamine receptors participate on the consolidation of two different memories. Behav. Brain Res. 271, 212217 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Geva R , Zivan M , Warsha A , Olchik D : Alerting, orienting or executive attention networks: differential patters of pupil dilations. Front. Behav. Neurosci. 7, 145 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gligoroska JP , Manchevska S : The effect of physical activity on cognition – physiological mechanisms. Mater. Sociomed. 24, 198202 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Gomez-Pinilla F , Hillman C : The influence of exercise on cognitive abilities. Compr. Physiol. 3, 403428 (2013)

  • 30.

    Gutmann B , Zimmer P , Hulsdunker T , Lefebvre J , Binnebossel S , Oberste M , Bloch W , Struder HK , Mierau A : The effects of exercise intensity and post-exercise recovery time on cortical activation as revealed by EEG alpha peak frequency. Neurosci. Lett. 668, 159163 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Halperin JM : Joggin’ for your noggin: the role of physical activity in attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry. 54, 537538 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Hansen N : The longevity of hippocampus-dependent memory is orchestrated by the locus coeruleus-noradrenergic system. Neural Plast. 2017, 2727602 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hansen N , Manahan-Vaughan D : Hippocampal long-term potentiation that is elicited by perforant path stimulation or that occurs in conjunction with spatial learning is tightly controlled by beta-adrenoreceptors and the locus coeruleus. Hippocampus 25, 12851298 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Hasselmo ME : The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710715 (2006)

  • 35.

    Haynes Iv JT , Frith E , Sng E , Loprinzi PD : Experimental effects of acute exercise on episodic memory function: considerations for the timing of exercise. Psychol. Rep. (2018)

    • Search Google Scholar
    • Export Citation
  • 36.

    Iwamoto GA , Kaufman MP : Caudal ventrolateral medullary cells responsive to muscular contraction. J. Appl. Physiol. (1985) 62, 149157 (1987)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Izumi Y , Zorumski CF : Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse 31, 196202 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Kandel ER , Dudai Y , Mayford MR : The molecular and systems biology of memory. Cell 157, 163186 (2014)

  • 39.

    Kinomura S , Larsson J , Gulyas B , Roland PE : Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271, 512515 (1996)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Kirk-Sanchez NJ , McGough EL : Physical exercise and cognitive performance in the elderly: current perspectives. Clin. Interv. Aging. 9, 5162 (2014)

    • Search Google Scholar
    • Export Citation
  • 41.

    Labban JD , Etnier JL : Effects of acute exercise on long-term memory. Res. Q. Exerc. Sport. 82, 712721 (2011)

  • 42.

    Laitman BM , John GR : Understanding how exercise promotes cognitive integrity in the aging brain. PLoS Biol. 13, e1002300 (2015)

  • 43.

    Lemon N , Manahan-Vaughan D : Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J. Neurosci. 26, 77237729 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Leung LS , Shen B , Rajakumar N , Ma J : Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J. Neurosci. 23, 92979304 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Li Q , Rothkegel M , Xiao ZC , Abraham WC , Korte M , Sajikumar S : Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cereb. Cortex. 24, 353363 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Loprinzi PD : Intensity-specific effects of acute exercise on human memory function: considerations for the timing of exercise and the type of memory. Health Promot. Perspect. 8, 255262 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Loprinzi PD , Edwards MK , Frith E : Potential avenues for exercise to activate episodic memory-related pathways: a narrative review. Eur. J. Neurosci. 46, 20672077 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Loprinzi PD , Frith E : A brief primer on the mediational role of BDNF in the exercise-memory link. Clin. Physiol. Funct. Imaging. 39, 914 (2018)

  • 49.

    Loprinzi PD , Frith E : Protective and therapeutic effects of exercise on stress-induced memory impairment. J. Physiol. Sci. (2018)

  • 50.

    Loprinzi PD , Frith E , Edwards MK , Sng E , Ashpole N : The effects of exercise on memory function among young to middle-aged adults: systematic review and recommendations for future research. Am. J. Health Promot. 32, 691704 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Loprinzi PD , Herod SM , Cardinal BJ , Noakes TD : Physical activity and the brain: a review of this dynamic, bi-directional relationship. Brain Res. 1539, 95104 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Loprinzi PD , Kane CJ : Exercise and cognitive function: a randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clin. Proc. 90, 450460 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Maletic-Savatic M , Malinow R , Svoboda K : Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 19231927 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Marzo A , Bai J , Otani S : Neuroplasticity regulation by noradrenaline in mammalian brain. Curr. Neuropharmacol. 7, 286295 (2009)

  • 55.

    Matsuzaki M , Honkura N , Ellis-Davies GC , Kasai H : Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761766 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    McGaugh JL : Memory – a century of consolidation. Science 287, 248251 (2000)

  • 57.

    McMorris T : Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: lessons from animal studies. Physiol. Behav. 165, 291299 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    McMorris T , Davranche K , Jones G , Hall B , Corbett J , Minter C : Acute incremental exercise, performance of a central executive task, and sympathoadrenal system and hypothalamic-pituitary-adrenal axis activity. Int. J. Psychophysiol. 73, 334340 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    McMorris T , Turner A , Hale BJ , Sproule J (2016): Beyond the catecholamines hypothesis for an acute exercise-cognition interaction: a neurochemical perspective. In: Exercise-Cognition Interaction: Neuroscience Perspectives, ed McMorris T, Academic Press, New York, pp. 65103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Mello-Carpes PB , Izquierdo I : The Nucleus of the Solitary Tract → Nucleus Paragigantocellularis → Locus Coeruleus → CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol. Learn. Mem. 100, 5663 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Mlinar B , Stocca G , Corradetti R : Endogenous serotonin facilitates hippocampal long-term potentiation at CA3/CA1 synapses. J. Neural. Transm. (Vienna) 122, 177185 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Moncada D , Viola H : Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J. Neurosci. 27, 74767481 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Morcom AM , Bullmore ET , Huppert FA , Lennox B , Praseedom A , Linnington H , Fletcher PC : Memory encoding and dopamine in the aging brain: a psychopharmacological neuroimaging study. Cereb. Cortex. 20, 743757 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Neve KA , Seamans JK , Trantham-Davidson H : Dopamine receptor signaling. J. Recept. Signal Transduct. Res. 24, 165205 (2004)

  • 65.

    Nikonenko I , Jourdain P , Muller D : Presynaptic remodeling contributes to activity-dependent synaptogenesis. J. Neurosci. 23, 84988505 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Ovsepian SV , Anwyl R , Rowan MJ : Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study. Eur. J. Neurosci. 20, 12671275 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Panja D , Bramham CR : BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76(Pt. C), 664676 (2014)

  • 68.

    Pietrelli A , Matkovic L , Vacotto M , Lopez-Costa JJ , Basso N , Brusco A : Aerobic exercise upregulates the BDNF-serotonin systems and improves the cognitive function in rats. Neurobiol. Learn. Mem. 155, 528542 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Ponce P , Loprinzi PD : A bi-directional model of exercise and episodic memory function. Med. Hypotheses. 117, 36 (2018)

  • 70.

    Poo MM , Pignatelli M , Ryan TJ , Tonegawa S , Bonhoeffer T , Martin KC , Rudenko A , Tsai LH , Tsien RW , Fishell G , Mullins C , Goncalves JT , Shtrahman M , Johnston ST , Gage FH , Dan Y , Long J , Buzsaki G , Stevens C : What is memory? The present state of the engram. BMC Biol. 14, 40 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Preston AR , Eichenbaum H : Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 23, R764R773 (2013)

  • 72.

    Pribram KH , McGuinness D : Arousal, activation, and effort in the control of attention. Psychol. Rev. 82, 116149 (1975)

  • 73.

    Rajab AS , Crane DE , Middleton LE , Robertson AD , Hampson M , MacIntosh BJ : A single session of exercise increases connectivity in sensorimotor-related brain networks: a resting-state fMRI study in young healthy adults. Front. Hum. Neurosci. 8, 625 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Richter-Levin G , Akirav I : Amygdala-hippocampus dynamic interaction in relation to memory. Mol. Neurobiol. 22, 1120 (2000)

  • 75.

    Roig M , Nordbrandt S , Geertsen SS , Nielsen JB : The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci. Biobehav. Rev. 37, 16451666 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Roig M , Thomas R , Mang CS , Snow NJ , Ostadan F , Boyd LA , Lundbye-Jensen J : Time-dependent effects of cardiovascular exercise on memory. Exerc. Sport Sci. Rev. 44, 8188 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Sajikumar S , Frey JU : Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 1225 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Sarter M , Gehring WJ , Kozak R : More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 51, 145160 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Segal SK , Cotman CW , Cahill LF : Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. J. Alzheimers Dis. 32, 10111018 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Sheynikhovich D , Otani S , Arleo A : Dopaminergic control of long-term depression/long-term potentiation threshold in prefrontal cortex. J. Neurosci. 33, 1391413926 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Shi SH , Hayashi Y , Petralia RS , Zaman SH , Wenthold RJ , Svoboda K , Malinow R : Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 18111816 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Slipczuk L , Bekinschtein P , Katche C , Cammarota M , Izquierdo I , Medina JH : BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS One 4, e6007 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Sng E , Frith E , Loprinzi PD : Temporal effects of acute walking exercise on learning and memory. Am. J. Health Promot. 32, 15181525 (2018)

  • 84.

    Snyder GL , Fienberg AA , Huganir RL , Greengard P : A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J. Neurosci. 18, 1029710303 (1998)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Stanton PK , Sarvey JM : Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. J Neurosci. 5, 21692176 (1985)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Sutoo D , Akiyama K : Regulation of brain function by exercise. Neurobiol. Dis. 13, 114 (2003)

  • 87.

    Takeuchi T , Duszkiewicz AJ , Morris RG : The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130288 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Tsujii T , Komatsu K , Sakatani K : Acute effects of physical exercise on prefrontal cortex activity in older adults: a functional near-infrared spectroscopy study. Adv. Exp. Med. Biol. 765, 293298 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    van Dongen EV , Kersten IH , Wagner IC , Morris RG , Fernandez G : Physical exercise performed four hours after learning improves memory retention and increases hippocampal pattern similarity during retrieval. Curr. Biol. 26, 17221727 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Wang GJ , Volkow ND , Fowler JS , Franceschi D , Logan J , Pappas NR , Wong CT , Netusil N : PET studies of the effects of aerobic exercise on human striatal dopamine release. J. Nucl. Med. 41, 13521356 (2000)

    • Search Google Scholar
    • Export Citation
  • 91.

    Wang Z , Myers KG , Guo Y , Ocampo MA , Pang RD , Jakowec MW , Holschneider DP : Functional reorganization of motor and limbic circuits after exercise training in a rat model of bilateral parkinsonism. PLoS One 8, e80058 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Weinberg L , Hasni A , Shinohara M , Duarte A : A single bout of resistance exercise can enhance episodic memory performance. Acta Psychol. (Amst). 153, 1319 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Winder DG , Martin KC , Muzzio IA , Rohrer D , Chruscinski A , Kobilka B , Kandel ER : ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24, 715726 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Winter B , Breitenstein C , Mooren FC , Voelker K , Fobker M , Lechtermann A , Krueger K , Fromme A , Korsukewitz C , Floel A , Knecht S : High impact running improves learning. Neurobiol. Learn. Mem. 87, 597609 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 98 0 0
May 2024 68 0 0
Jun 2024 69 4 4
Jul 2024 58 0 0
Aug 2024 44 0 0
Sep 2024 49 0 0
Oct 2024 57 0 0