Author:
PD Loprinzi Exercise & Memory Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, University, MS, USA

Search for other papers by PD Loprinzi in
Current site
Google Scholar
PubMed
Close
Restricted access

This review discusses the potential role that glial cells may play in influencing the relationship between exercise and episodic memory function. A narrative review methodology is employed. Herein, the different types of glial cells, their implications in subserving episodic memory function, and how exercise can modulate glial cell activity, particularly astrocyte functionality, are discussed. Although additional experimental work is needed, astrocytes appear to play an important role in the exercise–memory interaction. Exercise may increase astrocytic size, attenuate astrogliodegeneration, improve astrocytic aquaporin-4 expression, and increase astrocytic transporter levels. These effects, in turn, may help to increase the number of synapses that neurons form, increase the number of synaptic structures, and increase presynaptic function and postsynaptic receptor localization. Ultimately, these effects may help influence long-term potentiation and episodic memory function.

  • 1.

    Adamsky A , Kol A , Kreisel T , Doron A , Ozeri-Engelhard N , Melcer T , Refaeli R , Horn H , Regev L , Groysman M , London M , Goshen I : Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 5971.e14 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ashton RS , Conway A , Pangarkar C , Bergen J , Lim KI , Shah P , Bissell M , Schaffer DV : Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat. Neurosci. 15, 13991406 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ayadi AE , Zigmond MJ , Smith AD : IGF-1 protects dopamine neurons against oxidative stress: association with changes in phosphokinases. Exp. Brain Res. 234, 18631873 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Baldwin KT , Eroglu C : Molecular mechanisms of astrocyte-induced synaptogenesis. Curr. Opin. Neurobiol. 45, 113120 (2017)

  • 5.

    Beauquis J , Pavia P , Pomilio C , Vinuesa A , Podlutskaya N , Galvan V , Saravia F : Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp. Neurol. 239, 2837 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bolborea M , Dale N : Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 36, 91100 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Brockett AT , LaMarca EA , Gould E : Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS One 10, e0124859 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Choi SH , Bylykbashi E , Chatila ZK , Lee SW , Pulli B , Clemenson GD , Kim E , Rompala A , Oram MK , Asselin C , Aronson J , Zhang C , Miller SJ , Lesinski A , Chen JW , Kim DY , van Praag H , Spiegelman BM , Gage FH , Tanzi RE : Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, eaan8821 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Chung WS , Allen NJ , Eroglu C : Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7, a020370 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Corbin EA , Millet LJ , Keller KR , King WP , Bashir R : Measuring physical properties of neuronal and glial cells with resonant microsensors. Anal. Chem. 86, 48644872 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Covelo A , Araque A : Stimulating astrocytes to remember. Cell 174, 1213 (2018)

  • 12.

    de Senna PN , Bagatini PB , Galland F , Bobermin L , do Nascimento PS , Nardin P , Tramontina AC , Goncalves CA , Achaval M , Xavier LL : Physical exercise reverses spatial memory deficit and induces hippocampal astrocyte plasticity in diabetic rats. Brain Res. 1655, 242251 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Escartin C , Murai KK : Imaging and monitoring astrocytes in health and disease. Front. Cell. Neurosci. 8, 74 (2014)

  • 14.

    Fiacco TA , McCarthy KD : Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J. Neurosci. 38, 313 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Frith E , Loprinzi PD : Physical activity and individual cognitive function parameters: unique exercise-induced mechanisms. JCBPR 7, 92106 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Frith E , Sng E , Loprinzi PD : Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. Eur. J. Neurosci. 46, 25572564 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Fulmer CG , VonDran MW , Stillman AA , Huang Y , Hempstead BL , Dreyfus CF : Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J. Neurosci. 34, 81868196 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ginhoux F , Greter M , Leboeuf M , Nandi S , See P , Gokhan S , Mehler MF , Conway SJ , Ng LG , Stanley ER , Samokhvalov IM , Merad M : Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841845 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Green D , Loprinzi PD : Experimental effects of acute exercise on prospective memory and false memory. Psychol. Rep. 33294118782466 (2018) [Epub ahead of print]

    • Search Google Scholar
    • Export Citation
  • 20.

    Greener M : Don’t underestimate glial cells. Prog. Neurol. Psychiatry 19, 58 (2015)

  • 21.

    He XF , Liu DX , Zhang Q , Liang FY , Dai GY , Zeng JS , Pei Z , Xu GQ , Lan Y : Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front. Mol. Neurosci. 10, 144 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Latimer CS , Searcy JL , Bridges MT , Brewer LD , Popovic J , Blalock EM , Landfield PW , Thibault O , Porter NM : Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice. PLoS One 6, e26812 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lloyd BA , Hake HS , Ishiwata T , Farmer CE , Loetz EC , Fleshner M , Bland ST , Greenwood BN : Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior. Behav. Brain Res. 323, 5667 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Loprinzi PD : IGF-1 in exercise-induced enhancement of episodic memory. Acta Physiol. (Oxf). e13154 (2018)

  • 25.

    Loprinzi PD , Edwards MK : Exercise and cognitive-related semantic memory function. JCBPR 7, 5152 (2018)

  • 26.

    Loprinzi PD , Edwards MK : Exercise and implicit memory: a brief systematic review. Psychol. Rep. 121, 10721085 (2017)

  • 27.

    Loprinzi PD , Edwards MK , Frith E : Potential avenues for exercise to activate episodic memory-related pathways: a narrative review. Eur. J. Neurosci. 46, 20672077 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Loprinzi PD , Frith E : A brief primer on the mediational role of BDNF in the exercise-memory link. Clin. Physiol. Funct. Imaging, 39(1), 914 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Loprinzi PD , Frith E , Edwards MK : Exercise and emotional memory: a systematic review. J. Cogn. Enhanc. 110 (2018)

  • 30.

    Loprinzi PD , Frith E , Edwards MK : Resistance exercise and episodic memory function: a systematic review. Clin. Physiol. Funct. Imaging, 38(6), 923929 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Loprinzi PD , Frith E , Edwards MK , Sng E , Ashpole N : The effects of exercise on memory function among young to middle-aged adults: systematic review and recommendations for future research. Am. J. Health Promot. 32, 691704 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Loprinzi PD , Ponce P , Frith E : Hypothesized mechanisms through which acute exercise influences episodic memory. Physiol. Int. 105, 113 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Matsui T , Omuro H , Liu YF , Soya M , Shima T , McEwen BS , Soya H : Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc. Natl. Acad. Sci. U. S. A. 114, 63586363 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Moreno-Collazos JM , Orti ES : The effect of physical exercise on neurogenesis factor production in glial cells. Curr. Pharm. Des. 24, 4655 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Nagelhus EA , Amiry-Moghaddam M , Bergersen LH , Bjaalie JG , Eriksson J , Gundersen V , Leergaard TB , Morth JP , Storm-Mathisen J , Torp R , Walhovd KB , Tonjum T : The glia doctrine: addressing the role of glial cells in healthy brain ageing. Mech. Ageing Dev. 134, 449459 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    O’Brien ER , Howarth C , Sibson NR : The role of astrocytes in CNS tumors: pre-clinical models and novel imaging approaches. Front. Cell. Neurosci. 7, 40 (2013)

    • Search Google Scholar
    • Export Citation
  • 37.

    Ponce P , Loprinzi PD : A bi-directional model of exercise and episodic memory function. Med. Hypotheses 117, 36 (2018)

  • 38.

    Quesseveur G , David DJ , Gaillard MC , Pla P , Wu MV , Nguyen HT , Nicolas V , Auregan G , David I , Dranovsky A , Hantraye P , Hen R , Gardier AM , Deglon N , Guiard BP : BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl. Psychiatry 3, e253 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Rodriguez JJ , Terzieva S , Olabarria M , Lanza RG , Verkhratsky A : Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis. 4, e678 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Siddiqui A , Loprinzi PD : Experimental investigation of the time course effects of acute exercise on false episodic memory. J. Clin. Med. 7, 157 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Sng E , Frith E , Loprinzi PD : Experimental effects of acute exercise on episodic memory acquisition: decomposition of multi-trial gains and losses. Physiol. Behav. 186, 8284 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Sng E , Frith E , Loprinzi PD : Temporal effects of acute walking exercise on learning and memory function. Am. J. Health Promot. 32, 15181525 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Tsai SF , Chen PC , Calkins MJ , Wu SY , Kuo YM : Exercise counteracts aging-related memory impairment: a potential role for the astrocytic metabolic shuttle. Front. Aging Neurosci. 8, 57 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Uda M , Ishido M , Kami K , Masuhara M : Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain. Res. 1104, 6472 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Verkhratsky A , Nedergaard M : Astroglial cradle in the life of the synapse. Philos. Trans. R Soc. Lond. B Biol. Sci. 369, 20130595 (2014)

  • 46.

    Yanes D , Loprinzi PD : Experimental effects of acute exercise on iconic memory, short-term episodic, and long-term episodic memory. J. Clin. Med. 7, E146 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ziegler-Waldkirch S , d’Errico P , Sauer JF , Erny D , Savanthrapadian S , Loreth D , Katzmarski N , Blank T , Bartos M , Prinz M , Meyer-Luehmann M : Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer’s disease. EMBO J. 37, 167182 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Zorec R , Horvat A , Vardjan N , Verkhratsky A : Memory formation shaped by Astroglia. Front. Integr. Neurosci. 9, 56 (2015)

  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 33 0 0
Sep 2022 50 0 0
Oct 2022 82 0 0
Nov 2022 51 0 0
Dec 2022 46 0 1
Jan 2023 48 1 1
Feb 2023 33 0 0