Authors:
A Keihanian Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran

Search for other papers by A Keihanian in
Current site
Google Scholar
PubMed
Close
,
H Arazi Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran

Search for other papers by H Arazi in
Current site
Google Scholar
PubMed
Close
, and
M Kargarfard Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran

Search for other papers by M Kargarfard in
Current site
Google Scholar
PubMed
Close
Restricted access

The aim of this study was to compare the effects of 8 weeks of aerobic versus resistance training programs on serum fetuin-A, fetuin-B, and fibroblast growth factor-21 (FGF-21) levels in males with type 2 diabetes mellitus. Participants (n = 34) were randomly assigned to a resistance training group (RTG; n = 12), an aerobic training group (ATG; n = 11), or a control group (n = 11). The ATG completed 30–45 min of aerobic running training at 65%–75% of the maximum heart rate. The RTG completed three sets of 10 repetitions maximum of leg press, bench press, knee extension, seated cable row, knee flexion, military press, and calf rise. Blood samples were taken before and after the training period to assess dependent variables. After 8 weeks, both the ATG and the RTG reduced fetuin-A (p < 0.05) and fetuin-B (p < 0.05), but increased FGF-21 (p < 0.05). Moreover, the RTG showed greater decrease than the ATG in fetuin-A (−18.3% vs. −7.9%), fetuin-B (−29.2% vs. −11.45%), and a lower increase in FGF-21 (42.2% vs. 25.1%), respectively. Aerobic and resistance exercise training significantly decreased serum fetuin-A, and fetuin-B, and increased FGF-21 levels in males with type 2 diabetes mellitus. However, more significant alterations in serum factors were observed from resistance training. Thus, resistance training may be considered a more suitable training strategy.

  • 1.

    Aagaard P , Simonsen EB , Andersen JL , Magnusson P , Dyhre-Poulsen P : Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 93, 13181326 (2002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ahmadizad S , Haghighi AH , Hamedinia MR : Effects of resistance versus endurance training on serum adiponectin and insulin resistance index. Eur. J. Endocrinol. 157, 625631 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Alam S , Stolinski M , Pentecost C , Boroujerdi MA , Jones RH , Sonksen PH , Umpleby AM : The effect of a six-month exercise program on very low-density lipoprotein apolipoprotein B secretion in type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 688691 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Albright A , Franz M , Hornsby G , Kiriska A , Marrero D , Urlich I , Verity LS : Exercise and type diabetes. Med. Sci. Sports Exerc. 32, 13451360 (2000)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Andersson A , Sjodin A , Olsson R , Vessby B : Effects of physical exercise on phospholipid fatty acid composition in skeletal muscle. Am. J. Physiol. 274, E432E438 (1998)

    • Search Google Scholar
    • Export Citation
  • 6.

    Arora E , Shenoy S , Sandhu JS : Effects of resistance training on metabolic profile of adults with type 2 diabetes. Indian J. Med. Res. 129, 515519 (2009)

    • Search Google Scholar
    • Export Citation
  • 7.

    Balducci S , Leonetti F , Di Mario U , Fallucca F : Is a long-term aerobic plus resistance training program feasible for and effective on metabolic profiles in type 2 diabetes patients? Diabetes Care 27, 841842 (2004)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Castaneda C , Layne JE , Munoz-Orianz L : A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care 25, 25352541 (2002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Cauza E , Hanusch-Enserer U , Strasser B , Ludvik B , Metz-Schimmerl S , Pacini G , Wagner O , Georg P , Prager R , Kostner K , Dunky A , Haber P : The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch. Phys. Med. Rehabil. 86, 15271533 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Cronin JB , Mcnair PJ , Marshall RN : Is velocity specific strength training important in improving functional performance? J. Sports Med. Phys. Fitness. 42, 267273 (2002)

    • Search Google Scholar
    • Export Citation
  • 11.

    Dela F , Handberg A , Mikines KJ , Vinten J , Galbo H : GLUT4 and insulin receptor binding and kinase activity in trained human muscle. J. Physiol. 469, 615624 (1993)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Dela F , Ploug T , Handberg A , Petersen LN , Larsen JJ , Mikines KJ , Galbo H : Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM. Diabetes 43, 862865 (1994)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Dushay J , Chui PC , Gopalakrishnan GS , Varela-Rey M , Crawley M , Fisher FM , Badman MK , Martinez-Chantar ML , Maratos-Flier E : Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139, 456463 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Eston R , Reilly T (2009): Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data. Volume 1: Anthropometry. Routledge, London

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Eves ND , Plotnikoff RC : Resistance training and type 2 diabetes. Diabetes Care. 29, 19331941 (2006)

  • 16.

    Fazeli PK , Lun M , Kim SM , Bredella MA , Wright S , Zhang Y , Lee H , Catana C , Klibanski A , Patwari P , Steinhauser ML : FGF21 and the late adaptive response to starvation in humans. J. Clin. Invest. 125, 46014611 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hanson P (1984): Clinical exercise training. In: Sport Medicine, ed Strauss R, W.B. Saunders Company, Philadelphia, PA, pp. 1340

  • 18.

    Honig CR , Connett RJ , Gayeski TE : O2 transport and its interaction with metabolism; a systems view of aerobic capacity. Med. Sci. Sports Exerc. 24, 4753 (1992)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Irvine C , Taylor NF : Progressive resistance exercise improves glycemic control in people with type 2 diabetes mellitus: a systemic review. Aust. J. Physiother. 55, 237246 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Ivy JL , Zderic TW , Fogt DL : Prevention and treatment of non-insulin-dependent diabetes mellitus. Exerc. Sport Sci. Rev. 27, 135 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Jackson AS , Pollock ML : Practical assessment of body composition. Phys. Sportsmed. 13, 8290 (1985)

  • 22.

    Jung TW , Youn BS , Choi HY , Lee SY , Hong HC , Yang SJ , Yoo HJ , Kim BH , Baik SH , Choi KM : Salsalate and adiponectin ameliorate hepatic steatosis by inhibition of the hepatokine fetuin-A. Biochem. Pharmacol. 86, 960969 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kelly GA , Kelly KS : Effects of aerobic exercise on lipids and lipoproteins in adults with type 2 diabetes: a meta-analysis of randomized-controlled trials. Public Health 12, 643655 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kenney WL , Wilmore JH , Costill DL (2015): Physiology of Sport and Exercise (6th ed.), Human Kinetics, Champaign, IL

  • 25.

    Kim SH , Kim KH , Kim HK , Kim MJ , Back SH , Konishi M , Itoh N , Lee MS : Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress. Diabetologia 58, 809818 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kraemer WJ , Fry AC (1995): Strength testing: development and evaluation of methodology. In: Physiological Assessment of Humane Fitness, eds Maud PJ, Foster C, Human Kinetics, Champaign, IL, pp. 115138

    • Search Google Scholar
    • Export Citation
  • 27.

    Lee S , Norheim F , Gulseth HL , Langleite TM , Kolnes KJ , Tangen DS , Stadheim HK , Gilfillan GD , Holen T , Birkeland KI , Jensen J , Drevon CA : Interaction between plasma fetuin-A and free fatty acids predicts changes in insulin sensitivity in response to long-term exercise. Physiol. Rep. 5, e13183 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Marcell TJ , MCAuley KA , Traustadottir T , Reaven PD : Exercise training is not associated with improved levels of C-reactive protein or adiponectin. Metab. Clin. Exp. 54, 533541 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Marcus RL , Smith S , Morrell G , Addison O , Dibble LE , Wahoff-Stice D , LaStayo PC : Comparison of combined aerobic and high- force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus. Phys. Ther. 88, 13451354 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Marwick TH , Hordern MD , Miller T , Chyun DA , Bertoni AG , Blumenthal RS , Philippides G , Rocchini A : Exercise training for type 2 diabetes mellitus: impact on cardiovascular risk circulation. Circulation 119, 33443262 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Matthews DR , Hosker JP , Rudenski AS , Naylor BA , Treacher DF , Turner RC : Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419 (1985)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Mori K , Emoto M , Yokoyama H , Araki T , Teramura M , Koyama H , Shoji T , Inaba M , Nishizawa Y : Association of serum fetuin-A with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care 29, 468 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Nordlie RC , Foster JD , Lange AJ : Regulation of glucose production by the liver. Annu. Rev. Nutr. 19, 379406 (1999)

  • 34.

    Praet SFE , van Loon LGC : Optimizing the therapeutic benefits exercise in type 2 diabetes. J. Appl. Physiol. 103, 11131120 (2007)

  • 35.

    Rauth G , Pöschke O , Fink E , Eulitz M , Tippmer S , Kellerer M , Häring HU , Nawratil P , Haasemann M , Jahnen-Dechent W , Müller-Esterl W : The nucleotide and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor. Eur. J. Biochem. 204, 523529 (1992)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Reinehr T , Roth CL : Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J. Clin. Endocrinol. Metab. 93, 44794485 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Shenoy S , Arova E , Jaspal S : Effects of progressive resistance training and aerobic exercise onT2DM in Indian population. Int. J. Diabetes Metab. 17, 2730 (2009)

    • Search Google Scholar
    • Export Citation
  • 38.

    Sigal RJ , Kenny GP : Combined aerobic and resistance exercise for patients with type 2 diabetes. JAMA 304, 22982299 (2010)

  • 39.

    Sigal RJ , Kenny GP , Boule NG , Wells GA , Prud’homme D , Fortier M , Reid RD , Tulloch H , Coyle D , Phillips P , Jennings A , Jaffey J : Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes. Ann. Intern. Med. 147, 357369 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Yatagai T , Nishida Y , Nagasaka S , Nakamura T , Tokuyama K , Shindo M , Tanaka H , Ishibashi S : Relationship between exercise training-induced increase in insulin sensitivity and adiponectinemia in healthy men. Endocr. J. 50, 233238 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2023 65 0 0
Jul 2023 53 0 0
Aug 2023 41 0 0
Sep 2023 73 0 0
Oct 2023 95 6 4
Nov 2023 56 2 0
Dec 2023 0 0 0