View More View Less
  • 1 Trakya University, Turkey
  • 2 Trakya University, Turkey
  • 3 Trakya University, Turkey
  • 4 Istanbul University, Turkey
  • 5 Trakya University, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

The medial olivocochlear efferent (MOCE) branch synapses with outer hair cells (OHCs), and the efferent pathway can be activated via a contralateral acoustic stimulus (CAS). The activation of MOCE can change OHC motile responses and convert signals that are capable of controlling the sensitivity of the peripheral hearing system in a frequency-specific manner. The aim of this study was to examine the MOCE system activity in professional musicians using transient evoked otoacoustic emission test and CAS. Musician group showed stronger suppression in all frequency bands in the presence of CAS.

  • 1.

    Ashmore JF , Mammano F : Can you still see the cochlea for the molecules? Curr. Opin. Neurobiol. 11(4), 449454 (2001)

  • 2.

    Bargones JY , Burns EM : Suppression tuning curves for spontaneous otoacoustic emissions in infants and adults. J. Acoust. Soc. Am. 83(5), 18091816 (1988)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Berlin CI , Hood LJ , Wen H , Szabo P , Cecola RP , Rigby P , Jackson DF : Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hear. Res. 71(1–2), 111 (1993)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bray PJ (1989): Clicked evoked otoacoustic emissions and the development of a clinical otoacoustic hearing test instrument [Dissertation]. London University, London

    • Search Google Scholar
    • Export Citation
  • 5.

    Brashears SM , Morlet TG , Berlin CI , Hood LJ : Olivocochlear efferent suppression in classical musicians. J. Am. Acad. Audiol. 14(6), 314324 (2003)

    • Search Google Scholar
    • Export Citation
  • 6.

    Cooper NP , Guinan JJ , Jr : Efferent-mediated control of basilar membrane motion. J. Physiol. 576(Pt. 1), 4954 (2006)

  • 7.

    Dallos P : Active cochlea. J. Neurosci. 12(12), 45754585 (1992)

  • 8.

    Dallos P : Cochlear amplification, outer hair cells and prestin. Curr. Opin. Neurobiol. 18(4), 370376 (2008)

  • 9.

    Dallos P , Falkler B : Prestin, a new type of motor protein. Nat. Rev. Mol. Cell Biol. 3(2), 104111 (2002)

  • 10.

    Dallos P , Wu X , Cheatham MA , Gao J , Zheng J , Anderson CT , Jia S , Wang X , Cheng WH , Sengupta S , He DZ , Zuo J : Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron. 58(3), 333339 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Frolenkov GI , Mammano F , Kachar B : Regulation of outer hair cell cytoskeletal stiffness by intracellular Ca2+: underlying mechanism and implications for cochlear mechanics. Cell Calcium. 33(3), 185195 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Groff JA , Liberman MC : Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J. Neurophysiol. 90(5), 31783200 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Guinan JJ , Jr : Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 27(6), 589607 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Guinan JJ , Jr (1996): Physiology of Olivocochlear efferents. In: The Cochlea, eds Dallos P, Popper AN, Fay RR, Springer, New York, pp. 435502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Guinan JJ , Jr , Gifford ML : Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. Hear. Res. 37(1), 2945 (1988)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hood LJ , Berlin CI , Bordelon J , Rose K : Patients with auditory neuropathy/dys-synchrony lack efferent suppression of transient evoked otoacoustic emissions. J. Am. Acad. Audiol. 14(6), 302313 (2003)

    • Search Google Scholar
    • Export Citation
  • 17.

    Hood LJ , Berlin CI , Hurley A , Wen H (1996): Suppression of otoacoustic emissions in normal hearing individuals. In: Hair Cells and Hearing Aids, ed Berlin CI, Singular Publishing, London, 1st ed., pp. 5772

    • Search Google Scholar
    • Export Citation
  • 18.

    Kemp DT : Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 64(5), 13861391 (1978)

  • 19.

    Liberman MC , Gao J , He DZ , Wu X , Jia S , Zuo J : Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419(6904), 300304 (2002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Lilaonitkul W , Guinan, JJ, Jr: Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency. J. Neurophysiol. 107(6), 15981611 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Micheyl C , Khalfa S , Perrot X , Collet L : Difference in cochlear efferent activity between musicians and non-musicians. Neuroreport 8(4), 10471050 (1997)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mott JB , Norton SJ , Neely ST , Warr WB : Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear. Res. 38(3), 229242 (1989)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Parbery-Clark A , Skoe E , Kraus N : Musical experience limits the degradative effects of background noise on the neural processing of sound. J. Neurosci. 29(45), 1410014107 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Perrot X , Collet L : Function and plasticity of the medial olivocochlear system in musicians: a review. Hear. Res. 308, 2740 (2014)

  • 25.

    Perrot X , Micheyl C , Khalfa S , Collet L : Stronger bilateral efferent influences on cochlear biomechanical activity in musicians than in non-musicians. Neurosci. Lett. 262(3), 167170 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Perrot X , Ryvlin P , Isnard J , Guénot M , Catenoix H , Fischer C , Mauguière F , Collet L : Evidence for corticofugal modulation of peripheral auditory activity in humans. Cereb. Cortex. 16(7), 941948 (2006)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Probst R , Lonsbury-Martin BL , Martin GK : A review of otoacoustic emissions. J. Acoust. Soc. Am. 89(5), 20272067 (1991)

  • 28.

    Robles L , Ruggero MA : Mechanics of the mammalian cochlea. Physiol. Rev. 81(3), 13051352 (2001)

  • 29.

    Shera CA , Guinan JJ : Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J. Acoust. Soc. Am. 105(2), 782798 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Sridhar TS , Liberman MC , Brown MC , Sewell WF : A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J. Neurosci. 15(5 Pt. 1), 36673678 (1995)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Zhao W , Dhar S : The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J. Assoc. Res. Otolaryngol. 11(1), 5367 (2010)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Zheng J , Shen W , He DZ , Long KB , Madison LD , Dallos P : Prestin is the motor protein of cochlear outer hair cells. Nature 405(6783), 149155 (2000)

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 31 0 0
Nov 2020 27 1 0
Dec 2020 23 0 0
Jan 2021 19 0 0
Feb 2021 18 0 0
Mar 2021 16 0 0
Apr 2021 3 1 0