Authors:
Ç Özdemir Department of Physiology, Division of Sports Physiology, Faculty of Medicine, Çukurova University, Adana, Turkey

Search for other papers by Ç Özdemir in
Current site
Google Scholar
PubMed
Close
,
K Özgünen Department of Physiology, Division of Sports Physiology, Faculty of Medicine, Çukurova University, Adana, Turkey

Search for other papers by K Özgünen in
Current site
Google Scholar
PubMed
Close
,
Ö Günaştı Department of Physiology, Division of Sports Physiology, Faculty of Medicine, Çukurova University, Adana, Turkey

Search for other papers by Ö Günaştı in
Current site
Google Scholar
PubMed
Close
,
SK Eryılmaz Department of Physical Education and Sports, Çukurova University, Adana, Turkey

Search for other papers by SK Eryılmaz in
Current site
Google Scholar
PubMed
Close
,
A Kılcı Department of Physical Education and Sports, Çukurova University, Adana, Turkey

Search for other papers by A Kılcı in
Current site
Google Scholar
PubMed
Close
, and
SS Kurdak Department of Physiology, Division of Sports Physiology, Faculty of Medicine, Çukurova University, Adana, Turkey

Search for other papers by SS Kurdak in
Current site
Google Scholar
PubMed
Close
Restricted access

Background and aims

The aim of this study was to evaluate changes in fat oxidation rate during 40 min of continuous exercise and identify the intensity at the highest fat oxidation rate (Fatmax).

Methods

A total of 14 sedentary males with age, body height, weight, and BMI averages of 29.3 ± 0.7 years, 178.3 ± 1.7 cm, 81.1 ± 3.9 kg, and 25.4 ± 0.9 kg/m2, respectively, were included in the study. Fatmax was determined using an indirect calorimeter with an incremental treadmill walking test at least after 12 h of fasting. On a separate day, at least after 12 h of fasting, the participants walked for 40 min within their predetermined individual Fatmax heart rate and speed ranges.

Results

The initial fat oxidation rate was not sustained within the first 16 min of exercise and was reduced; however, carbohydrate oxidation reached a stable level after nearly 10 min.

Conclusions

In sedentary individuals, during low-intensity physical activity, fat oxidation rates may not be sustainable as expected from Fatmax testing. Therefore, when exercise is prescribed, one should consider that the fat oxidation rate might decrease in sedentary overweight individuals.

  • 1.

    Achten J , Gleeson M , Jeukendrup AE : Determination of the exercise intensity that elicits maximal fat oxidation. Med. Sci. Sports Exerc. 34, 9297 (2002)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Achten J , Jeukendrup AE : Optimizing fat oxidation through exercise and diet. Nutrition 20, 716727 (2004)

  • 3.

    American Thoracic Society; American College of Chest Physicians: ATS/ACCP statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 167, 211277 (2003)

    • Search Google Scholar
    • Export Citation
  • 4.

    Beaver WL , Wasserman K , Whipp BJ : A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 60, 20202027 (1986)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ben Ounis O , Elloumi M , Zouhal H , Makni E , Lac G , Tabka Z , Amri M : Effect of an individualized physical training program on resting cortisol and growth hormone levels and fat oxidation during exercise in obese children. Ann. Endocrinol. (Paris). 72, 3441 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bogdanis GC , Vangelakoudi A , Maridaki M : Peak fat oxidation rate during walking in sedentary overweight men and women. J. Sports Sci. Med. 7, 525531 (2008)

    • Search Google Scholar
    • Export Citation
  • 7.

    Bordenave S , Metz L , Flavier S , Lambert K , Ghanassia E , Dupuy AM , Michel F , Puech-Cathala AM , Raynaud E , Brun JF , Mercier J : Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity. Effect of endurance training in type 2 diabetes. Diabetes Metab. 34, 162168 (2008)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Brun JF , Romain AJ , Guiraudou M , Fedou C , Mercier J : Stability over time of the level of maximal lipid oxidation during exercise. Sci. Sports. 29, 168171 (2014)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Brun JF , Romain AJ , Mercier J : Maximal lipid oxidation during exercise (Lipoxmax): from physiological measurements to clinical applications. Facts and uncertainties. Sci. Sports 26, 5771 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Cheneviere X , Borrani F , Ebenegger V , Gojanovic B , Malatesta D : Effect of a 1-hour single bout of moderate-intensity exercise on fat oxidation kinetics. Metabolism 58, 17781786 (2009)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Chuang ML , Ting H , Otsuka T , Sun XG , Chiu FYL , Beaver WL , Hansen JE , Lewis DA , Wasserman K : Aerobically generated CO2 stored during early exercise. J. Appl. Physiol. 87, 10481058 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Coyle EF : Substrate utilization during exercise in active people. Am. J. Clin. Nutr. 61(4 Suppl.), 968S979S (1995)

  • 13.

    Dasilva SG , Guidetti L , Buzzachera CF , Elsangedy HM , Krinski K , De Campos W , Goss FL , Baldari C : Gender-based differences in substrate use during exercise at a self-selected pace. J. Strength Cond. Res. 25, 25442551 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Emerenziani GP , Ferrari D , Marocco C , Greco EA , Migliaccio S , Lenzi A , Baldari C , Guidetti L : Relationship between individual ventilatory threshold and maximal fat oxidation (MFO) over different obesity classes in women. PLoS One 14, e0215307 (2019)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Fiuza-Luces C , Garatachea N , Berger NA , Lucia A : Exercise is the real polypill. Physiology (Bethesda). 28, 330358 (2013)

  • 16.

    Frayn KN : Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55, 628634 (1983)

    • Search Google Scholar
    • Export Citation
  • 17.

    Galgani JE , Moro C , Ravussin E : Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295, E1009E1017 (2008)

  • 18.

    Granata C , Jamnick NA , Bishop DJ : Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 48, 18091828 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Herdy AH , Uhlendorf D : Reference values for cardiopulmonary exercise testing for sedentary and active men and women. Arq. Bras. Cardiol. 96, 5459 (2011)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hiatt WR , Regensteiner JG , Wolfel EE , Ruff L , Brass EP : Carnitine and acylcarnitine metabolism during exercise in humans. Dependence on skeletal muscle metabolic state. J. Clin. Invest. 84, 11671173 (1989)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Iwayama K , Kurihara R , Nabekura Y , Kawabuchi R , Park I , Kobayashi M , Ogata H , Kayaba M , Satoh M , Tokuyama K : Exercise increases 24-h fat oxidation only when it is performed before breakfast. EBioMedicine 2, 20032009 (2015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Jackson AS , Pollock ML : Generalized equations for predicting body density of men. Br. J. Nutr. 40, 497504 (1978)

  • 23.

    Jeppesen J , Kiens B : Regulation and limitations to fatty acid oxidation during exercise. J. Physiol. 590, 10591068 (2012)

  • 24.

    Jeukendrup A , Achten J : Fatmax: a new concept to optimize fat oxidation during exercise? Eur. J. Sport Sci. 1, 15 (2001)

  • 25.

    Jeukendrup AE , Wallis GA : Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int. J. Sports Med. 26(Suppl. 1), S28S37 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kelley DE : Skeletal muscle fat oxidation: timing and flexibility are everything. J. Clin. Invest. 115, 16991702 (2005)

  • 27.

    Kim JY , Hickner RC , Cortright RL , Dohm GL , Houmard JA : Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E1039E1044 (2000)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Krssak M , Falk Petersen K , Dresner A , DiPietro L , Vogel SM , Rothman DL , Roden M , Shulman GI : Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42, 113116 (1999)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lima-Silva AE , Bertuzzi RCM , Pires FO , Gagliardi JFL , Barros RV , Hammond J , Kiss MAPDM : Relationship between training status and maximal fat oxidation rate. J. Sports Sci. Med. 9, 3135 (2010)

    • Search Google Scholar
    • Export Citation
  • 30.

    Martin AD , Spenst LF , Drinkwater DT , Clarys JP : Anthropometric estimation of muscle mass in men. Med. Sci. Sport Exerc. 22, 729733 (1990)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Maunder E , Plews DJ , Kilding AE : Contextualising maximal fat oxidation during exercise: determinants and normative values. Front. Physiol. 9, 599611 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Mendelson M , Jinwala K , Wuyam B , Levy P , Flore P : Can crossover and maximal fat oxidation rate points be used equally for ergocycling and walking/running on a track? Diab. Metab. 38, 264270 (2012)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Meyer T , Gassler N , Kindermann W : Determination of “Fatmax” with 1 h cycling protocols of constant load. Appl. Physiol. Nutr. Metab. 32, 249256 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Nielsen S , Guo Z , Albu JB , Klein S , O’Brien PC , Jensen MD : Energy expenditure, sex, and endogenous fuel availability in humans. J. Clin. Invest. 111, 981988 (2003)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Perez-Martin A , Dumortier M , Raynaud E , Brun JF , Fedou C , Bringer J , Mercier J : Balance of substrate oxidation during submaximal exercise in lean and obese people. Diab. Metab. 27, 466474 (2001)

    • Search Google Scholar
    • Export Citation
  • 36.

    Purdom T , Kravitz L , Dokladny K , Mermier C : Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 15, 312 (2018)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Randell RK , Rollo I , Roberts TJ , Dalrymple KJ , Jeukendrup AE , Carter JM : Maximal fat oxidation rates in an athletic population. Med. Sci. Sports Exerc. 49, 133140 (2017)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Shimada K , Yamamoto Y , Iwayama K , Nakamura K , Yamaguchi S , Hibi M , Nabekura Y , Tokuyama K : Effects of post-absorptive and postprandial exercise on 24 h fat oxidation. Metabolism 62, 793800 (2013)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Shook RP , Hand GA , Paluch AE , Wang X , Moran R , Hebert JR , Jakicic JM , Blair SN : High respiratory quotient is associated with increases in body weight and fat mass in young adults. Eur. J. Clin. Nutr. 70, 11971202 (2016)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Siri WE (1961): Volumetric approach to body composition. In: Techniques for Measuring Body Composition, eds Brozek J, Henschel A, National Academy of Sciences – National Research Council, Washington, DC, pp. 77135

    • Search Google Scholar
    • Export Citation
  • 41.

    Stasiulė L , Čapkauskienė S : Kinetics of pulmonary ventilation and carbondioxide output during intermittent increasing cycling exercise after a prior anaerobic load. J. Sport Health Sci. 2, 4855 (2014)

    • Search Google Scholar
    • Export Citation
  • 42.

    Steinhaus LA , Dustman RE , Ruhling RO , Emmerson RY , Johnson SC , Shearer DE , Shigeoka JW , Bonekat WH : Cardio-respiratory fitness of young and older active and sedentary men. Br. J. Sports Med. 22, 163166 (1988)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Stephens FB , Constantin-Teodosiu D , Greenhaff PL : New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J. Physiol. 581, 431444 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Venables MC , Achten J , Jeukendrup AE : Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J. Appl. Physiol. 98, 160167 (2005)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Weltan SM , Bosch AN , Dennis SC , Noakes TD : Influence of muscle glycogen content on metabolic regulation. Am. J. Physiol. 274, 7282 (1998)

    • Search Google Scholar
    • Export Citation
  • 46.

    Whipp BJ : Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans. Exp. Physiol. 92, 347355 (2007)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 41 0 0
Jul 2024 59 0 0
Aug 2024 34 0 0
Sep 2024 39 0 0
Oct 2024 104 0 0
Nov 2024 56 0 0
Dec 2024 5 0 0