View More View Less
  • 1 Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
  • 2 Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Abstract

Introduction

Exposure to noise stress during early life may permanently affect the structure and function of the central nervous system. The aim of this study was to evaluate the effects of prenatal exposure to urban traffic noise on the spatial learning and memory of the rats' offspring and the expression of glucocorticoid receptors (GRs) in their hippocampi.

Methods

Three g\roups of pregnant rats were exposed to recorded urban traffic noise for 1, 2 or 4 h/day during the last week of pregnancy. At the age of 45 days, their male offspring were introduced to the Morris water maze (MWM) for assessment of spatial learning and memory. The corticosterone levels were measured in the offspring's sera by radioimmunoassay, and the relative expression of glucocorticoid and mineralocorticoid receptors (MRs) in their hippocampi was evaluated via RT-PCR.

Results

Facing urban traffic noise for 2 and 4 h/day during the third trimester of pregnancy caused the offspring to spend more time and to travel a larger distance than the controls to find the target platform. Analogously, these two groups were inferior to their control counterparts in the probe test. Also, prenatal noise stress elevated the corticosterone concentration in the sera of the rats' offspring and dose-dependently decreased the relative expression of the mRNA of both GRs and MRs in their hippocampi.

Conclusions

Urban traffic noise exposure during the last trimester of pregnancy impairs spatial learning and memory of rat offspring and reduces GRs and MRs gene expression in the hippocampus.

  • 1.

    Kozlowska L, Gromadzinska J, Wasowicz W. Health risk in transport workers. Part II. Dietary compounds as modulators of occupational exposure to chemicals. Int J Occup Med Environ Health 2019; 32: 44164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Jafari Z, Kolb BE, Mohajerani MH. Noise exposure accelerates the risk of cognitive impairment and Alzheimer's disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci Biobehav Rev 2019. S0149–7634(18)30897-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Meijer OC, Buurstede JC, Schaaf MJM. Corticosteroid receptors in the brain: transcriptional mechanisms for specificity and context-dependent effects. Cell Mol Neurobiol 2019; 39: 53949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Viho EMG, Buurstede JC, Mahfouz A, Koorneef LL, van Weert L, Houtman R, . Corticosteroid action in the brain: the potential of selective receptor modulation. Neuroendocrinology 2019; 109: 26676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Korz V, Frey JU. Stress-related modulation of hippocampal long-term potentiation in rats: involvement of adrenal steroid receptors. J Neurosci 2003; 23: 72817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Madalena KM, Lerch JK. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural Plast 2017; 2017: 8640970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Tertil M, Skupio U, Barut J, Dubovyk V, Wawrzczak-Bargiela A, Soltys Z, . Glucocorticoid receptor signaling in astrocytes is required for aversive memory formation. Transl Psychiatry 2018; 8: 255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Schwabe L, Joels M, Roozendaal B, Wolf OT, Oitzl MS. Stress effects on memory: an update and integration. Neurosci Biobehav Rev 2012; 36: 17409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gitau R, Fisk NM, Teixeira JM, Cameron A, Glover V. Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. J Clin Endocrinol Metab 2001; 86: 1049.

    • Search Google Scholar
    • Export Citation
  • 10.

    Benediktsson R, Calder AA, Edwards CR, Seckl JR. Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf) 1997; 46: 1616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Jensen Peña C, Monk C. Champagne FA: Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLOS One 2012; 7: e39791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Querleu D, Renard X, Versyp F, Paris-Delrue L, Crèpin G. Fetal hearing. Eur J Obstet Gynecol Reprod Biol 1988; 28: 191212.

  • 13.

    Alyamani RAS, Murgatroyd C. Epigenetic programming by early-life stress. Prog Mol Biol Transl Sci 2018; 157: 13350.

  • 14.

    Jafari Z, Mehla J, Kolb BE, Mohajerani MH. Prenatal noise stress impairs HPA axis and cognitive performance in mice. Sci Rep 2017; 7: 10560.

  • 15.

    Soares-Cunha C, Coimbra B, Borges S, Domingues AV, Silva D, Sousa N, . Mild prenatal stress causes emotional and brain structural modifications in rats of both sexes. Front Behav Neurosci 2018; 12: 129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci. Biobehav Rev 2008; 32: 107386.

  • 17.

    Calabrese E, Badea A, Watson C, Johnson GA. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability. NeuroImage 2013; 71: 196206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Yang L, Pan Z, Zhou L, Lin S, Wu K. Continuously changed genes during postnatal periods in rat visual cortex. Neurosci Lett 2009; 462: 1625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Arbabi E, Hamidi G, Talaei SA, Salami M. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism. Iran J Basic Med Sci 2016; 19: 128590.

    • Search Google Scholar
    • Export Citation
  • 20.

    Sandi C, Pinelo-Nava MT. Stress and memory: behavioral effects and neurobiological mechanisms. Neural Plast 2007; 2007: 78970.

  • 21.

    Barzegar M, Sajjadi FS, Talaei SA, Hamidi G, Salami M. Prenatal exposure to noise stress: anxiety, impaired spatial memory, and deteriorated hippocampal plasticity in postnatal life. Hippocampus 2015; 25: 18796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hu L, Yang J, Song T, Hou N, Liu Y, Zhao X, . A new stress model, a scream sound, alters learning and monoamine levels in rat brain. Physiol Behav 2014; 123: 10513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Weinstock M. Prenatal stressors in rodents: Effects on behavior. Neurobiol Stress 2016; 6: 313.

  • 24.

    Gonzalez-Perez O, Chavez-Casillas O, Jauregui-Huerta F, Lopez-Virgen V, Guzman-Muniz J, Moy-Lopez N, . Stress by noise produces differential effects on the proliferation rate of radial astrocytes and survival of neuroblasts in the adult subgranular zone. Neurosci Res 2011; 70: 24350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Liu L, Shen P, He T, Chang Y, Shi L, Tao S, . Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci Rep 2016; 6: 20374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Weinstock M. Sex-dependent changes induced by prenatal stress in cortical and hippocampal morphology and behaviour in rats: an update. Stress 2011; 14: 60413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Morales-Medina JC, Sanchez F, Flores G, Dumont Y, Quirion R. Morphological reorganization after repeated corticosterone administration in the hippocampus, nucleus accumbens and amygdala in the rat. J Chem Neuroanat 2009; 38: 26672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Perez-Laso C, Ortega E, Martin JL, Perez-Izquierdo MA, Gomez F, Segovia S, . Maternal care interacts with prenatal stress in altering sexual dimorphism in male rats. Horm Behav 2013; 64: 62433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Pardon M, Gerardin P, Joubert C, Perez-Diaz F, Cohen-Salmon C. Influence of prepartum chronic ultramild stress on maternal pup care behavior in mice. Biol Psychiatry 2000; 47: 85863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Patin V, Lordi B, Vincent A, Thoumas JL, Vaudry H, Caston J. Effects of prenatal stress on maternal behavior in the rat. Brain Res Dev Brain Res 2002; 139: 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Diaz R, Brown RW, Seckl JR. Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J Neurosci 1998; 18: 257080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Sandi C. Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci 2011; 34: 16576.

  • 33.

    Douma BRK, Korte SM, Buwalda B, la Fleur SE, Bohus B, Luiten PGM. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning. Psychoneuroendocrinology 1998; 23: 3344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Inoue R, Abdou K, Hayashi-Tanaka A, Muramatsu SI, Mino K, Inokuchi K, . Glucocorticoid receptor-mediated amygdalar metaplasticity underlies adaptive modulation of fear memory by stress. Elife 2018; 7: e34135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Berger S, Wolfer DP, Selbach O, Alter H, Erdmann G, Reichardt HM, . Loss of the limbic mineralocorticoid receptor impairs behavioral plasticity. Proc Natl Acad Sci U.S.A. 2006; 103: 195200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Freeman AI, Munn HL, Lyons V, Dammermann A, Seckl JR, Chapman KE. Glucocorticoid down-regulation of rat glucocorticoid receptor does not involve differential promoter regulation. J Endocrinol 2004; 183: 36574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Szuran TF, Pliska V, Pokorny J, Welzl H. Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol Behav 2000; 71: 35362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Mifsud KR, Saunderson EA, Spiers H, Carter SD, Trollope AF, Mill J, . Rapid down-regulation of glucocorticoid receptor gene expression in the dentate gyrus after acute stress in vivo: role of DNA methylation and microRNA activity. Neuroendocrinology 2017; 104: 15769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Herman JP, Spencer R. Regulation of hippocampal glucocorticoid receptor gene transcription and protein expression in vivo. J Neurosci 1998; 18: 746273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Henry C, Kabbaj M, Simon H, Le Moal M, Maccari S. Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. J Neuroendocrinol 1994; 6: 3415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 2011; 59: 27989.