Authors:
Soheil Biglari Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, Islamic Republic of Iran

Search for other papers by Soheil Biglari in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5532-1491
,
Alireza Ghardashi Afousi Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, Islamic Republic of Iran

Search for other papers by Alireza Ghardashi Afousi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5075-2225
,
Farnoosh Mafi Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, Islamic Republic of Iran

Search for other papers by Farnoosh Mafi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7722-9960
, and
Fatemeh Shabkhiz Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, Islamic Republic of Iran

Search for other papers by Fatemeh Shabkhiz in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1183-9517
Restricted access

Abstract

Objective

It has been shown that high-intensity interval training (HIIT) leads to skeletal muscle hypertrophy; however, its mechanisms of cellular and molecular regulation are still unclear. The purpose of this study was to investigate the effect of HIIT on muscle hypertrophy and major signal transduction pathways.

Design

12 male rats were randomly divided into two groups: control and HIIT. The exercise group performed 30-min HIIT in each session (5 × 4-min intervals running at 85–95% VO2max separated by 2-min active rest at 55–60% VO2max), 3 days/week for 8 weeks. Muscle fiber cross-sectional area (CSA) and the expression of signal transduction pathway proteins were determined in the gastrocnemius muscle.

Results

In the HIIT group, the expression of IGF-I, IGF-IR Akt, p-Akt, AMPKα, p-AMPKα and follistatin increased significantly, whereas a significant decrease was observed in the expression of FoxO1, p-FoxO1, myostatin, ActRIIB, Smad2/3 and p-Smad2/3 (P < 0.05). However, there were no significant differences between the HIIT and control groups in the expression of mTOR, p-mTOR, P70S6K, and p-P70S6K (P > 0.05). In addition, CSA and gastrocnemius muscle weight increased significantly in the HIIT group (P < 0.05).

Conclusions

HIIT induced muscle hypertrophy by improving IGF-I/Akt/FoxO and myostatin/Smad signal transduction pathways.

  • 1.

    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013; 280: 4294314.

  • 2.

    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001; 3: 101419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nat Cell Biol 2001; 3: 100913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Calnan D, Brunet A. The foxo code. Oncogene 2008; 27: 2276.

  • 5.

    McPherron AC, Lawler AM, Lee S-J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387: 8390.

  • 6.

    Lee Y-S, Lehar A, Sebald S, Liu M, Swaggart KA, Talbot CC Jr, et al. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy. Hum Mol Genet 2015; 24: 571119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab 2014; 39: 40912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab 2017; 25: 58192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil 2007; 14: 75360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Afousi AG, Gaeini A, Rakhshan K, Naderi N, Azar AD, Aboutaleb N. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia/reperfusion injury. J Cell Commun Signal 2019; 13: 25567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Winbanks CE, Weeks KL, Thomson RE, Sepulveda PV, Beyer C, Qian H, et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol 2012; 197: 9971008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 2011; 1: 4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Xu M, Chen X, Chen D, Yu B, Huang Z. FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget 2017; 8: 1066274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N, Gillen JB, et al. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol 2014; 99: 78291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 21426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, et al. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol 2008; 104: 145261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Thomson DM, Gordon SE. Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle. J Physiol 2006; 574: 291305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Wimmer RJ, Liu Y, Schachter TN, Stonko DP, Peercy BE, Schneider MF. Mathematical modeling reveals modulation of both nuclear influx and efflux of Foxo1 by the IGF-I/PI3K/Akt pathway in skeletal muscle fibers. Am J Physiol Cell Physiol 2014; 306: C57084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Tang L, Zhang J, Zhao X, Li N, Jian W, Sun S, et al. Low-intensity pulsed ultrasound promotes exercise-induced muscle hypertrophy. Ultrasound Med Biol 2017; 43: 141120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Camporez J-PG, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci U.S.A 2016; 113: 22127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Ko IG, Jeong JW, Kim YH, Jee YS, Kim SE, Kim SH, et al. Aerobic exercise affects myostatin expression in aged rat skeletal muscles: a possibility of antiaging effects of aerobic exercise related with pelvic floor muscle and urethral rhabdosphincter. Int Neurourol J 2014; 18: 7785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mosler S, Relizani K, Mouisel E, Amthor H, Diel P. Combinatory effects of siRNA-induced myostatin inhibition and exercise on skeletal muscle homeostasis and body composition. Physiol Rep 2014; 2: e00262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Tang L, Luo K, Liu C, Wang X, Zhang D, Chi A, et al. Decrease in myostatin by ladder-climbing training is associated with insulin resistance in diet-induced obese rats. Chin Med J (Engl) 2014; 127: 23429.

    • Search Google Scholar
    • Export Citation
  • 24.

    Elliott BT, Herbert P, Sculthorpe N, Grace FM, Stratton D, Hayes LD. Lifelong exercise, but not short-term high-intensity interval training, increases GDF11, a marker of successful aging: a preliminary investigation. Physiol Rep 2017; 5: e13343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Bell KE, Séguin C, Parise G, Baker SK, Phillips SM. Day-to-day changes in muscle protein synthesis in recovery from resistance, aerobic, and high-intensity interval exercise in older men. J Gerontol A Biol Sci Med Sci 2015; 70: 10249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Allen DL, Unterman TG. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol 2007; 292: C18899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 2009; 296: C124857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.356
SJR Q rank Q2

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge Effective from 1st Apr 2025:
600 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 115 0 0
Jan 2025 112 0 0
Feb 2025 155 6 5
Mar 2025 147 0 0
Apr 2025 69 0 0
May 2025 50 3 3
Jun 2025 0 0 0