Authors:
K. Kalantar Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran

Search for other papers by K. Kalantar in
Current site
Google Scholar
PubMed
Close
,
Z. Farzaneh Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran

Search for other papers by Z. Farzaneh in
Current site
Google Scholar
PubMed
Close
,
M. Eshkevar Vakili Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran

Search for other papers by M. Eshkevar Vakili in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4067-5400
,
M.H. Karimi Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran

Search for other papers by M.H. Karimi in
Current site
Google Scholar
PubMed
Close
,
M. Asadi Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran

Search for other papers by M. Asadi in
Current site
Google Scholar
PubMed
Close
,
S. Khosropanah Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran

Search for other papers by S. Khosropanah in
Current site
Google Scholar
PubMed
Close
, and
M. Doroudchi Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran

Search for other papers by M. Doroudchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Introduction

Atherosclerosis is an inflammatory disease causing a vast array of cardiovascular diseases. Adipophilin has been reported to be highly expressed in atherosclerotic lesions. This study investigated the possible existence of auto-reactive T cells against an HLA-A02-restricted adipophilin-derived peptide as well as peptides from Epstein-barr virus (EBV), Cytomegalovirus (CMV) and influenza (Flu) virus in patients with atherosclerosis.

Methods

HLA-A02 expression on peripheral blood mononuclear cells (PBMCs) was examined by flow cytometry. PBMCs from HLA-A02 individuals were stimulated with adipophilin, CMV, EBV, and Flu peptides at a concentration of 10 µM. Interferon (IFN)-γ production was evaluated in the culture supernatant using a commercial ELISA test.

Results

The levels of IFN-γ production against an HLA-A02-restricted adipophilin peptide and peptides from CMV, EBV, and Flu revealed no statistically significant differences between patients and healthy controls. However, we found a positive correlation between IFN-γ production against adipophilin and Body mass index (BMI) of patients (R = 0.8, P = 0.003), whereas no significant correlation was found in healthy controls (R = −0.267, P = 0.378). No correlation between BMI and IFN-γ production against CMV, EBV, or Flu peptides was found.

Discussion

Atherosclerotic patients with higher BMIs might have greater numbers of T cells against adipophilin that is highly expressed in atherosclerotic plaques. Therefore, autoimmune reactions may have a greater role in the development of atherosclerosis in individuals with higher BMI.

  • 1.

    Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 2009; 27: 16597.

  • 2.

    Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016; 118: 53546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol 2010; 134: 3346.

  • 4.

    Rosenfeld M, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost 2011; 106: 85867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Woollard KJ. Immunological aspects of atherosclerosis. Clin Sci (Lond) 2013; 125: 22135.

  • 6.

    Gewaltig J, Kummer M, Koella C, Cathomas G, Biedermann BC. Requirements for CD8 T-cell migration into the human arterial wall. Hum Pathol 2008; 39: 175662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, et al.. Cytotoxic and proinflammatory CD8 + T lymphocytes promote development of vulnerable atherosclerotic plaques in ApoE-deficient mice. Circulation 2013; 127: 102839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wu R, Giscombe R, Holm G, Lefvert AK. Induction of human cytotoxic T lymphocytes by oxidized low density lipoproteins. Scand J Immunol 1996; 43: 3814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2002; 2: 4019.

  • 10.

    Gupta S, Pablo AM, Jiang Xc, Wang N, Tall AR, Schindler C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997; 99: 275261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Voloshyna I, Littlefield MJ, Reiss AB. Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med 2014; 24: 4551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Sessa R, Pietro MD, Filardo S, Turriziani O. Infectious burden and atherosclerosis: a clinical issue. World J Clin Cases 2014; 2: 2409.

  • 13.

    Pedicino D, Giglio AF, Galiffa VA, Cialdella P, Trotta F, Graziani F, et al.. Infections, immunity and atherosclerosis: pathogenic mechanisms and unsolved questions. Int J Cardiol 2013; 166: 57283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Mallat Z, Taleb S, Ait-Oufella H, Tedgui A. The role of adaptive T cell immunity in atherosclerosis. J Lipid Res 2009; 50: S3649.

  • 15.

    Nuotio K, Isoviita PM, Saksi J, Ijäs P, Pitkäniemi J, Sonninen R, et al.. Adipophilin expression is increased in symptomatic carotid atherosclerosis. Stroke 2007; 38: 17918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Wang X, Reape TJ, Li X, Rayner K, Webb CL, Burnand KG, et al.. Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein and in atherosclerotic lesions. FEBS Lett 1999; 462: 14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Schmidt SM, Schag K, Müller MR, Weinschenk T, Appel S, Schoor O, et al.. Induction of adipophilin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res 2004; 64: 116470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, et al.. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 2002; 62: 581827.

    • Search Google Scholar
    • Export Citation
  • 19.

    Heid HW, Moll R, Schwetlick I, Rackwitz H-R, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 1998; 294: 30921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Martinuzzi E, Scotto M, Énée E, Brezar V, Ribeil J-A, van Endert P, et al.. Serum-free culture medium and IL-7 costimulation increase the sensitivity of ELISpot detection. J Immunol Methods 2008; 333: 6170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Wang Z, Nakayama T. Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm 2010; 2010: 535918.

  • 22.

    Irace C, Scavelli F, Carallo C, Serra R, Cortese C, Gnasso A. Body mass index, metabolic syndrome and carotid atherosclerosis. Coron Artery Dis 2009; 20: 949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Khan SS, Ning H, Wilkins JT, Allen N, Carnethon M, Berry JD, et al.. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol 2018; 3: 2807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Imahori Y, Mathiesen EB, Leon DA, Hopstock LA, Hughes AD, Johnsen SH, et al.. The contribution of obesity to carotid atherosclerotic plaque burden in a general population sample in Norway: The Tromsø Study. Atherosclerosis 2018; 273: 1520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Straub BK, Gyoengyoesi B, Koenig M, Hashani M, Pawella LM, Herpel E, et al.. Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation. Histopathology 2013; 62: 61731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Campbell LA, Rosenfeld ME. Infection and atherosclerosis development. Arch Med Res 2015; 46: 33950.

  • 27.

    Hendrix MG, Salimans MM, van Boven CP, Bruggeman CA. High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am J Pathol 1990; 136: 238.

    • Search Google Scholar
    • Export Citation
  • 28.

    Jonasson L, Tompa A, Wikby A. Expansion of peripheral CD8+ T cells in patients with coronary artery disease: relation to cytomegalovirus infection. J Intern Med 2003; 254: 4728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Melnick JL, Adam E, Debakey ME. Cytomegalovirus and atherosclerosis. Bioessays 1995; 17: 899903.

  • 30.

    Shi Y, Tokunaga O. Herpesvirus (HSV-1, EBV and CMV) infections in atherosclerotic compared with non-atherosclerotic aortic tissue. Pathol Int 2002; 52: 319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Yi L, Wang D-X, Feng Z-J. Detection of human cytomegalovirus in atherosclerotic carotid arteries in humans. J Formos Med Assoc 2008; 107: 77481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Fateh-Moghadam S, Bocksch W, Wessely R, Jäger G, Hetzer R, Gawaz M. Cytomegalovirus infection status predicts progression of heart-transplant vasculopathy. Transplantation 2003; 76: 14704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Grattan MT. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA 1989; 261: 35616.

  • 34.

    Roberts ET, Haan MN, Dowd JB, Aiello AE. Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol 2010; 172: 36371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Chen R, Xiong S, Yang Y, Fu W, Wang Y, Ge J. The relationship between human cytomegalovirus infection and atherosclerosis development. Mol Cell Biochem 2003; 249: 916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Ibrahim AI, Obeid MT, Jouma MJ, Moasis GA, Al-Richane WL, Kindermann I, et al.. Detection of herpes simplex virus, cytomegalovirus and Epstein-Barr virus DNA in atherosclerotic plaques and in unaffected bypass grafts. J Clin Virol 2005; 32: 2932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Latsios G, Saetta A, Michalopoulos NV, Agapitos E, Patsouris E. Detection of cytomegalovirus, Helicobacter pylori and Chlamydia pneumoniae DNA in carotid atherosclerotic plaques by the polymerase chain reaction. Acta Cardiol 2004; 59: 6527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Lin TM, Chen Wj, Chen HY, Wang PW, Eng HL. Increased incidence of cytomegalovirus but not Chlamydia pneumoniae in atherosclerotic lesions of arteries of lower extremities from patients with diabetes mellitus undergoing amputation. J Clin Pathol 2003; 56: 42932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Reszka E, Jegier B, Wasowicz W, Lelonek M, Banach M, Jaszewski R. Detection of infectious agents by polymerase chain reaction in human aortic wall. Cardiovasc Pathol 2008; 17: 297302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Bartels C, Maass M, Bein G, Malisius R, Brill N, Bechtel JFM, et al.. Detection of Chlamydia pneumoniae but not cytomegalovirus in occluded saphenous vein coronary artery bypass grafts. Circulation 1999; 99: 87982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Daus H, Özbek C, Saage D, Scheller B, Schieffer H, Pfreundschuh M, et al.. Lack of evidence for a pathogenic role of Chlamydia pneumoniae and cytomegalovirus infection in coronary atheroma formation. Cardiology 1998; 90: 838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    de Boer OJ, Teeling P, Idu MM, Becker AE, Wal ACvd. Epstein Barr virus specific T-cells generated from unstable human atherosclerotic lesions: Implications for plaque inflammation. Atherosclerosis 2006; 184: 3229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Auer J, Leitinger M, Berent R, Prammer W, Weber T, Lassnig E, et al.. Influenza A and B IgG seropositivity and coronary atherosclerosis assessed by angiography. Heart Dis 2002; 4: 34954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Guan X-R, Li X, Xin X-M, Jiang L-X, Cui L-Y, Wang L-F, et al.. Influenza virus infection and risk of acute myocardial infarction. Inflammation 2008; 31: 26672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Keller TT, van der Meer JJ, Teeling P, van der Sluijs K, Idu MM, Rimmelzwaan GF, et al.. Selective expansion of influenza A virus–specific T cells in symptomatic human carotid artery atherosclerotic plaques. Stroke 2008; 39: 1749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2023  
Web of Science  
Journal Impact Factor 2.2
Rank by Impact Factor Q3 (Physiology)
Journal Citation Indicator 0.58
Scopus  
CiteScore 3.4
CiteScore rank Q2 (Physical Therapy, Sports Therapy and Rehabilitation)
SNIP 0.508
Scimago  
SJR index 0.407
SJR Q rank Q2

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 752 EUR / 828 USD
Print + online subscription: 880 EUR / 968 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 151 1 2
Nov 2024 79 0 0
Dec 2024 55 0 0
Jan 2025 64 0 0
Feb 2025 81 0 0
Mar 2025 71 0 0
Apr 2025 0 0 0