View More View Less
  • 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
  • 2 Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Abstract

No previous studies have evaluated the potential combined effects of acute exercise and acute hypoxia exposure on memory function, which was the purpose of this study. Twenty-five participants (Mage = 21.2 years) completed two laboratory visits in a counterbalanced order, involving 1) acute exercise (a 20-min bout of moderate-intensity exercise) and then 30 min of exposure to hypoxia (FIO2 = 0.12), and 2) exposure to hypoxia alone (FIO2 = 0.12) for 30 min. Following this, participants completed a cued-recall and memory interference task (AB/AC paradigm), assessing cued-recall memory (recall 1 and recall 2) and memory interference (proactive and retroactive interference). For cued-recall memory, we observed a significant main effect for condition, with Exercise + Hypoxia condition having significantly greater cued-recall performance than Hypoxia alone. Memory interference did not differ as a function of the experimental condition. This experiment demonstrates that engaging in an acute bout of exercise prior to acute hypoxia exposure had an additive effect in enhancing cued-recall memory performance.

  • 1.

    Amann M, Kayser B. Nervous system function during exercise in hypoxia. High Alt Med Biol 2009; 10: 14964.

  • 2.

    Paola MD, Bozzali M, Fadda L, Musicco M, Sabatini U, Caltagirone C. Reduced oxygen due to high‐altitude exposure relates to atrophy in motor‐function brain areas. Eur J Neurol 2008; 15: 10507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    de Aquino Lemos V, Antunes HKM, dos Santos RVT, Lira FS, Tufik S, de Mello MT. High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology 2012; 49: 1298306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Loprinzi PD, Matalgah A, Crawford L, Yu JJ, Kong Z, Wang B, . Effects of acute normobaric hypoxia on memory interference. Brain Sci 2019; 9: 323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    McMorris T, Hale BJ, Barwood M, Costello J, Corbett J. Effect of acute hypoxia on cognition: a systematic review and meta-regression analysis. Neurosci Biobehav Rev 2017; 74: 22532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Dale EA, Ben Mabrouk F, Mitchell GS. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology 2014; 29: 3948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Gozal D, Daniel JM, Dohanich GP. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J Neurosci 2001; 21: 244250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lovett-Barr MR, Satriotomo I, Muir GD, Wilkerson JE, Hoffman MS, Vinit S, . Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 2012; 32: 3591600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Dale-Nagle EA, Hoffman MS, MacFarlane PM, Mitchell GS. Multiple pathways to long-lasting phrenic motor facilitation. Adv Exp Med Biol 2010; 669: 22530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lawley JS, Macdonald JH, Oliver SJ, Mullins PG. Unexpected reductions in regional cerebral perfusion during prolonged hypoxia. J Physiol 2017; 595: 93547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bramham, CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76: 99125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, . VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 2004; 36: 82735.

  • 13.

    Martens LK, Kirschner KM, Warnecke C, Scholz H. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. J Biol Chem 2007; 282: 1437988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993; 361: 319.

  • 15.

    Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF‐1α expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 2008; 217: 67485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Murray PS, Holmes PV. An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. Int J Pept 2011; 2011: 654085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Loprinzi PD. Intensity-specific effects of acute exercise on human memory function: considerations for the timing of exercise and the type of memory. Health Promot Perspect 2018; 8: 255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Loprinzi PD, Edwards MK, Frith E. Potential avenues for exercise to activate episodic memory‐related pathways: a narrative review. Eur J Neurosci 2017; 46: 206777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Loprinzi PD. The effects of exercise on long-term potentiation: a candidate mechanism of the exercise-memory relationship. OBM Neurobiol 2019; 3: 13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Loprinzi PD, Ponce P, Frith E. Hypothesized mechanisms through which acute exercise influences episodic memory. Physiol Int 2018; 105: 28597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Frith E, Sng E, Loprinzi PD. Randomized controlled trial evaluating the temporal effects of high‐intensity exercise on learning, short‐term and long‐term memory, and prospective memory. Eur J Neurosci 2017; 46: 255764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Loprinzi PD, Blough J, Crawford L, Ryu S, Zou L, Li H. The temporal effects of acute exercise on episodic memory function: systematic review with meta-analysis. Brain Sci 2019; 9: 87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Johnson L, Crawford L, Zou L, Loprinzi PD. Experimental effects of acute exercise in attenuating memory interference: considerations by biological sex. Medicina (Kaunas) 2019; 55: 331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Loprinzi PD, Frith E, Crawford L. The effects of acute exercise on retroactive memory interference. Am J Health Promot 2020; 34: 2531.

  • 25.

    Crawford LK, Li H, Zou L, Wei GX, Loprinzi PD. Hypothesized mechanisms through which exercise may attenuate memory interference. Medicina (Kaunas) 2020; 56: 129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Tsujii T, Komatsu K, Sakatani K. Acute effects of physical exercise on prefrontal cortex activity in older adults: a functional near-infrared spectroscopy study. Adv Exp Med Biol 2013; 765: 2938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Martínez MC, Villar ME, Ballarini F, Viola H. Retroactive interference of object‐in‐context long‐term memory: role of dorsal hippocampus and medial prefrontal cortex. Hippocampus 2014; 24: 148292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Guise KG, Shapiro ML. Medial prefrontal cortex reduces memory interference by modifying hippocampal encoding. Neuron 2017; 94: 18392.

  • 29.

    Koolschijn RS, Emir UE, Pantelides AC, Nili H, Behrens TE, Barron HC. The hippocampus and neocortical inhibitory engrams protect against memory interference. Neuron 2019; 101: 52841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Lei OK, Kong Z, Loprinzi PD, Shi Q, Sun S, Zou L, . Severe hypoxia does not offset the benefits of exercise on cognitive function in sedentary young women. Int J Environ Res Public Health 2019; 16: 1003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Sun S, Loprinzi PD, Guan H, Zou L, Kong Z, Hu Y, . The effects of high-intensity interval exercise and hypoxia on cognition in sedentary young adults. Medicina (Kaunas) 2019; 55: 43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Fox 3rd SM. Physical activity and the prevention of coronary heart disease. Ann Clin Res 1971; 3: 40432.

  • 33.

    Astrand PO. Experimental studies of physical working capacity in relation to sex and age (dissertation). Copenhagen, Ejnar Munksgaard; 1952: 171 p.

    • Search Google Scholar
    • Export Citation
  • 34.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol 2001; 37: 1536.

  • 35.

    Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK. Longitudinal modeling of the relationship between age and maximal heart rate.Med Sci Sports Exerc 2007; 39: 8229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Gulati M, Shaw LJ, Thisted RA, Black HR, Bairey Merz CN, Arnsdorf MF. Heart rate response to exercise stress testing in asymptomatic women: the St. James women take heart project. Circulation 2010; 122: 1307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gagnon SA, Wagner AD. Acute stress and episodic memory retrieval: neurobiological mechanisms and behavioral consequences. Ann N Y Acad Sci 2016; 1369: 5575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Roozendaal B, McGaugh JL. Memory modulation. Behav Neurosci 2011; 125: 797.

  • 39.

    Yoon J, Seo Y, Kim J, Lee I. Hippocampus is required for paired associate memory with neither delay nor trial uniqueness. Learn Mem 2012; 19: 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Crawford L, Loprinzi PD. Effects of intensity-specific acute exercise on paired-associative memory and memory interference. Psych 2019; 1: 290305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Ando S, Komiyama T, Sudo M, Higaki Y, Ishida K, Costello JT, . The interactive effects of acute exercise and hypoxia on cognitive performance: a narrative review. Scand J Med Sci Sports 2020; 30: 38498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Curtelin D, Morales-Alamo D, Torres-Peralta R, Rasmussen P, Martin-Rincon M, Perez-Valera M, . Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. J Cereb Blood Flow Metab 2018; 38: 13650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Moore D, Loprinzi PD. Exercise influences episodic memory via changes in the hippocampal neurocircuitry by inducing long-term potentiation. Eur J Neurosci. , first published on March 31 (2020).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Helan M, Aravamudan B, Hartman WR, Thompson MA, Johnson BD, Pabelick CM, . BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia. J Mol Cell Cardiol 2014; 68: 8997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Wiener CM, Booth G, Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 1996; 225: 4858.