Authors:
M. JungExercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA

Search for other papers by M. Jung in
Current site
Google Scholar
PubMed
Close
,
I. BrizesExercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA

Search for other papers by I. Brizes in
Current site
Google Scholar
PubMed
Close
,
S. WagesExercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA

Search for other papers by S. Wages in
Current site
Google Scholar
PubMed
Close
,
P. PonceExercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA

Search for other papers by P. Ponce in
Current site
Google Scholar
PubMed
Close
,
M. KangHealth and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA

Search for other papers by M. Kang in
Current site
Google Scholar
PubMed
Close
, and
P.D. LoprinziExercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA

Search for other papers by P.D. Loprinzi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7711-4741
Restricted access

Abstract

No previous studies have evaluated the potential combined effects of acute exercise and acute hypoxia exposure on memory function, which was the purpose of this study. Twenty-five participants (Mage = 21.2 years) completed two laboratory visits in a counterbalanced order, involving 1) acute exercise (a 20-min bout of moderate-intensity exercise) and then 30 min of exposure to hypoxia (FIO2 = 0.12), and 2) exposure to hypoxia alone (FIO2 = 0.12) for 30 min. Following this, participants completed a cued-recall and memory interference task (AB/AC paradigm), assessing cued-recall memory (recall 1 and recall 2) and memory interference (proactive and retroactive interference). For cued-recall memory, we observed a significant main effect for condition, with Exercise + Hypoxia condition having significantly greater cued-recall performance than Hypoxia alone. Memory interference did not differ as a function of the experimental condition. This experiment demonstrates that engaging in an acute bout of exercise prior to acute hypoxia exposure had an additive effect in enhancing cued-recall memory performance.

  • 1.

    Amann M, Kayser B. Nervous system function during exercise in hypoxia. High Alt Med Biol 2009; 10: 14964.

  • 2.

    Paola MD, Bozzali M, Fadda L, Musicco M, Sabatini U, Caltagirone C. Reduced oxygen due to high‐altitude exposure relates to atrophy in motor‐function brain areas. Eur J Neurol 2008; 15: 10507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    de Aquino Lemos V, Antunes HKM, dos Santos RVT, Lira FS, Tufik S, de Mello MT. High altitude exposure impairs sleep patterns, mood, and cognitive functions. Psychophysiology 2012; 49: 1298306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Loprinzi PD, Matalgah A, Crawford L, Yu JJ, Kong Z, Wang B, et al.. Effects of acute normobaric hypoxia on memory interference. Brain Sci 2019; 9: 323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    McMorris T, Hale BJ, Barwood M, Costello J, Corbett J. Effect of acute hypoxia on cognition: a systematic review and meta-regression analysis. Neurosci Biobehav Rev 2017; 74: 22532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Dale EA, Ben Mabrouk F, Mitchell GS. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology 2014; 29: 3948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Gozal D, Daniel JM, Dohanich GP. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J Neurosci 2001; 21: 244250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lovett-Barr MR, Satriotomo I, Muir GD, Wilkerson JE, Hoffman MS, Vinit S, et al.. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 2012; 32: 3591600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Dale-Nagle EA, Hoffman MS, MacFarlane PM, Mitchell GS. Multiple pathways to long-lasting phrenic motor facilitation. Adv Exp Med Biol 2010; 669: 22530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lawley JS, Macdonald JH, Oliver SJ, Mullins PG. Unexpected reductions in regional cerebral perfusion during prolonged hypoxia. J Physiol 2017; 595: 93547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bramham, CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76: 99125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al.. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 2004; 36: 82735.

  • 13.

    Martens LK, Kirschner KM, Warnecke C, Scholz H. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. J Biol Chem 2007; 282: 1437988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993; 361: 319.

  • 15.

    Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF‐1α expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 2008; 217: 67485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Murray PS, Holmes PV. An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. Int J Pept 2011; 2011: 654085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Loprinzi PD. Intensity-specific effects of acute exercise on human memory function: considerations for the timing of exercise and the type of memory. Health Promot Perspect 2018; 8: 255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Loprinzi PD, Edwards MK, Frith E. Potential avenues for exercise to activate episodic memory‐related pathways: a narrative review. Eur J Neurosci 2017; 46: 206777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Loprinzi PD. The effects of exercise on long-term potentiation: a candidate mechanism of the exercise-memory relationship. OBM Neurobiol 2019; 3: 13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Loprinzi PD, Ponce P, Frith E. Hypothesized mechanisms through which acute exercise influences episodic memory. Physiol Int 2018; 105: 28597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Frith E, Sng E, Loprinzi PD. Randomized controlled trial evaluating the temporal effects of high‐intensity exercise on learning, short‐term and long‐term memory, and prospective memory. Eur J Neurosci 2017; 46: 255764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Loprinzi PD, Blough J, Crawford L, Ryu S, Zou L, Li H. The temporal effects of acute exercise on episodic memory function: systematic review with meta-analysis. Brain Sci 2019; 9: 87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Johnson L, Crawford L, Zou L, Loprinzi PD. Experimental effects of acute exercise in attenuating memory interference: considerations by biological sex. Medicina (Kaunas) 2019; 55: 331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Loprinzi PD, Frith E, Crawford L. The effects of acute exercise on retroactive memory interference. Am J Health Promot 2020; 34: 2531.

  • 25.

    Crawford LK, Li H, Zou L, Wei GX, Loprinzi PD. Hypothesized mechanisms through which exercise may attenuate memory interference. Medicina (Kaunas) 2020; 56: 129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Tsujii T, Komatsu K, Sakatani K. Acute effects of physical exercise on prefrontal cortex activity in older adults: a functional near-infrared spectroscopy study. Adv Exp Med Biol 2013; 765: 2938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Martínez MC, Villar ME, Ballarini F, Viola H. Retroactive interference of object‐in‐context long‐term memory: role of dorsal hippocampus and medial prefrontal cortex. Hippocampus 2014; 24: 148292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Guise KG, Shapiro ML. Medial prefrontal cortex reduces memory interference by modifying hippocampal encoding. Neuron 2017; 94: 18392.

  • 29.

    Koolschijn RS, Emir UE, Pantelides AC, Nili H, Behrens TE, Barron HC. The hippocampus and neocortical inhibitory engrams protect against memory interference. Neuron 2019; 101: 52841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Lei OK, Kong Z, Loprinzi PD, Shi Q, Sun S, Zou L, et al.. Severe hypoxia does not offset the benefits of exercise on cognitive function in sedentary young women. Int J Environ Res Public Health 2019; 16: 1003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Sun S, Loprinzi PD, Guan H, Zou L, Kong Z, Hu Y, et al.. The effects of high-intensity interval exercise and hypoxia on cognition in sedentary young adults. Medicina (Kaunas) 2019; 55: 43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Fox 3rd SM. Physical activity and the prevention of coronary heart disease. Ann Clin Res 1971; 3: 40432.

  • 33.

    Astrand PO. Experimental studies of physical working capacity in relation to sex and age (dissertation). Copenhagen, Ejnar Munksgaard; 1952: 171 p.

    • Search Google Scholar
    • Export Citation
  • 34.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol 2001; 37: 1536.

  • 35.

    Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK. Longitudinal modeling of the relationship between age and maximal heart rate.Med Sci Sports Exerc 2007; 39: 8229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Gulati M, Shaw LJ, Thisted RA, Black HR, Bairey Merz CN, Arnsdorf MF. Heart rate response to exercise stress testing in asymptomatic women: the St. James women take heart project. Circulation 2010; 122: 1307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gagnon SA, Wagner AD. Acute stress and episodic memory retrieval: neurobiological mechanisms and behavioral consequences. Ann N Y Acad Sci 2016; 1369: 5575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Roozendaal B, McGaugh JL. Memory modulation. Behav Neurosci 2011; 125: 797.

  • 39.

    Yoon J, Seo Y, Kim J, Lee I. Hippocampus is required for paired associate memory with neither delay nor trial uniqueness. Learn Mem 2012; 19: 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Crawford L, Loprinzi PD. Effects of intensity-specific acute exercise on paired-associative memory and memory interference. Psych 2019; 1: 290305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Ando S, Komiyama T, Sudo M, Higaki Y, Ishida K, Costello JT, et al.. The interactive effects of acute exercise and hypoxia on cognitive performance: a narrative review. Scand J Med Sci Sports 2020; 30: 38498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Curtelin D, Morales-Alamo D, Torres-Peralta R, Rasmussen P, Martin-Rincon M, Perez-Valera M, et al.. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. J Cereb Blood Flow Metab 2018; 38: 13650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Moore D, Loprinzi PD. Exercise influences episodic memory via changes in the hippocampal neurocircuitry by inducing long-term potentiation. Eur J Neurosci. , first published on March 31 (2020).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Helan M, Aravamudan B, Hartman WR, Thompson MA, Johnson BD, Pabelick CM, et al.. BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia. J Mol Cell Cardiol 2014; 68: 8997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Wiener CM, Booth G, Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 1996; 225: 4858.

  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 16 0 0
Sep 2022 27 0 0
Oct 2022 9 0 0
Nov 2022 14 0 0
Dec 2022 3 0 0
Jan 2023 27 0 0
Feb 2023 0 0 0