View More View Less
  • 1 Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Islamic Republic of Iran
  • | 2 Department of Biology, Hamedan Branch, Islamic Azad University, Hamedan, Islamic Republic of Iran
  • | 3 Avicenna International College, Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Abstract

Purpose

Progesterone has been reported to inhibit the proliferation of breast cancer and osteosarcoma cells; however, its inhibitory mechanism has not yet been clarified. The aim of the present study was to clarify the effects of progesterone on apoptosis in breast cancer (MCF-7) and human osteosarcoma (MG-63) cells.

Materials and methods

In this experimental study the cytotoxic effect of progesterone was measured in MCF-7 and MG-63 cells exposed to different concentrations of progesterone using MTT assay, and effective concentrations were identified. The expression levels of the Bax, P53 and Bcl-2 genes were evaluated by real-time PCR, and caspase-3, 8 and 9 activity levels were determined using a colorimetric method. Hoechst staining and flow cytometry were used to confirm apoptosis. The data were statistically analyzed using one-way analysis of variance (ANOVA) and independent-samples t-test.

Results

Compared to the control group, we observed a significant increase in the expression levels of the Bax and P53 genes and the activity levels of caspase-3 and 9, and a significant decrease in the expression level of the Bcl-2 gene in MCF-7 and MG-63 treated with effective concentration of progesterone. The caspase-8 activity level did not change significantly in treated MG-63 but increased in treated MCF-7 cells. Hoechst staining and flow cytometry results confirmed apoptosis in the cells exposed to effective concentration of progesterone.

Conclusions

The cytotoxic effect of progesterone on breast cancer and osteosarcoma cells was mediated by apoptotic pathways. In this context, progesterone triggers the extrinsic and intrinsic apoptotic pathways in MCF-7 cells and induces the intrinsic apoptotic pathway in MG-63 cells.

  • 1.

    Nagini S. Breast cancer: Current molecular therapeutic targets and new players. Anticancer Agents Med Chem 2017; 17: 15263.

  • 2.

    Kindblom L. Bone tumors: epidemiology, classification, pathology. In: Davies A, Sundaram M, James S, editors. Imaging of bone tumors and tumor-like lesions. Medical radiology. Berlin, Heidelberg: Springer; 2009. p. 115.

    • Search Google Scholar
    • Export Citation
  • 3.

    Gadducci A, Biglia N, Sismondi P, Genazzani AR. Breast cancer and sex steroids: critical review of epidemiological, experimental and clinical investigations on etiopathogenesis, chemoprevention and endocrine treatment of breast cancer. Gynecol Endocrinol 2005; 20: 34360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Farach-Carson MC, Lin S-H, Nalty T, Satcher RL. Sex differences and bone metastases of breast, lung, and prostate cancers: do bone homing cancers favor feminized bone marrow?. Front Oncol 2017; 7: 163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gonzalez Ricarte M, Castro Pérez Ad, Tarín JJ, Cano A. Progestogens and risk of breast cancer: a link between bone and breast?. Gynecol Endocrinol 2016; 32: 68.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Chaiwongwatanakul S, Yanatatsaneejit P, Tongsima S, Mutirangura A, Boonyaratanakornkit V. Sex steroids regulate expression of genes containing long interspersed elements-1s in breast cancer cells. Asian Pac J Cancer Prev 2016; 17: 40037.

    • Search Google Scholar
    • Export Citation
  • 7.

    Ruan X, Neubauer H, Yang Y, Schneck H, Schultz S, Fehm T, et al.. Progestogens and membrane-initiated effects on the proliferation of human breast cancer cells. Climacteric 2012; 15: 46772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Vares G, Ory K, Lectard B, Levalois C, Altmeyer-Morel S, Chevillard S, et al.. Progesterone prevents radiation-induced apoptosis in breast cancer cells. Oncogene 2004; 23: 4603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Tian JM, Ran B, Zhang CL, Yan DM, Li XH. Estrogen and progesterone promote breast cancer cell proliferation by inducing cyclin G1 expression. Braz J Med Biol Res 2018; 51: 17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chen F-P, Chien M-H, Chen H-Y, Huang T-S, Ng Y-T. Effects of estradiol and progestogens on human breast cells: Regulation of sex steroid receptors. Taiwan J Obstet Gynecol 2013; 52: 36573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Im JY, Kim TH, Lee YJ, Kim IY, Kwack SJ, Byung Mu Lee CSM, et al.. Molecular mechanism of progesterone-induced apoptosis in human breast cancer T47D cells. Cancer prevention research 2008; 13: 17783.

    • Search Google Scholar
    • Export Citation
  • 12.

    Luo G, Abrahams VM, Tadesse S, Funai EF, Hodgson EJ, Gao J, et al.. Progesterone inhibits basal and tnf-α-induced apoptosis in fetal membranes: a novel mechanism to explain progesterone-mediated prevention of preterm birth. Reprod Sci 2010; 17: 5329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Nguyen H, Syed V. Progesterone inhibits growth and induces apoptosis in cancer cells through modulation of reactive oxygen species. Gynecol Endocrinol 2011; 27: 8306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kon A, Yuan B, Hanazawa T, Kikuchi H, Sato M, Furutani R, et al.. Contribution of membrane progesterone receptor α to the induction of progesterone-mediated apoptosis associated with mitochondrial membrane disruption and caspase cascade activation in Jurkat cell lines. Oncol Rep 2013; 30: 196570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wang Q-P, Xie H, Yuan L-Q, Luo X-H, Li H, Wang D, et al.. Effect of progesterone on apoptosis of murine MC3T3-E1 osteoblastic cells. Amino Acids 2009; 36: 5763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Yao W, Dai W, Shahnazari M, Pham A, Chen Z, Chen H, et al.. Inhibition of the progesterone nuclear receptor during the bone linear growth phase increases peak bone mass in female mice. PLoS One 2010; 5: e11410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Chlebowski RT. Bone health in women with early-stage breast cancer. Clin Breast Cancer 2005; 5: S35S40.

  • 18.

    Bravo D, Shogren KL, Zuo D, Wagner ER, Sarkar G, Yaszemski MJ, et al.. 2‐methoxyestradiol‐mediated induction of frzb contributes to cell death and autophagy in MG-63 osteosarcoma cells. J Cell Biochem 2017; 118: 1497504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rickard DJ, Iwaniec UT, Evans G, Hefferan TE, Hunter JC, Waters KM, et al.. Bone growth and turnover in progesterone receptor knockout mice. Endocrinology 2008; 149: 238390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Liang M, Liao Ey, Xu X, Luo Xh, Xiao Xh. Effects of progesterone and 18‐methyl levonorgestrel on osteoblastic cells. Endocr Res 2003; 29: 483501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Dohi O, Hatori M, Suzuki T, Ono K, Hosaka M, Akahira JI, et al.. Sex steroid receptors expression and hormone‐induced cell proliferation in human osteosarcoma. Cancer Sci 2008; 99: 51823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Zhang N, Wang W, Li W, Liu C, Wang Y, Sun K. Reduction of progesterone, estradiol and hCG secretion by perfluorooctane sulfonate via induction of apoptosis in human placental syncytiotrophoblasts. Placenta 2015; 36: 57580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Li Y, Wang H, Zhou D, Shuang T, Zhao H, Chen B. Up-regulation of long noncoding rna sra promotes cell growth, inhibits cell apoptosis, and induces secretion of estradiol and progesterone in ovarian granular cells of mice. Med Sci Monit 2018; 24: 2384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Chang W-T, Cheng H-L, Hsieh B-S, Chiu C-C, Lee K-T, Chang K-L. Progesterone increases apoptosis and inversely decreases autophagy in human hepatoma HA22T/VGH cells treated with epirubicin. Sci World J 2014: 2014.

    • Search Google Scholar
    • Export Citation
  • 25.

    Araki T, Yamamoto A, Yamada M. Accurate determination of DNA content in single cell nuclei stained with Hoechst 33258 fluorochrome at high salt concentration. Histochemistry 1987; 87: 3318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Yao G, Ling L, Luan J, Ye D, Zhu P. Nonylphenol induces apoptosis of Jurkat cells by a caspase-8 dependent mechanism. Int Immunopharmacol 2007; 7: 44453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Grott M, Karakaya S, Mayer F, Baertling F, Beyer C, Kipp M, et al.. Progesterone and estrogen prevent cisplatin-induced apoptosis of lung cancer cells. Anticancer Res 2013; 33: 791800.

    • Search Google Scholar
    • Export Citation
  • 28.

    Hu Z, Deng X. The effect of progesterone on proliferation and apoptosis in ovarian cancer cell. Zhonghua Fu Chan Ke Za Zhi 2000; 35: 4236.

    • Search Google Scholar
    • Export Citation
  • 29.

    Chávez-Riveros A, Garrido M, Apan MTR, Zambrano A, Díaz M, Bratoeff E. Synthesis and cytotoxic effect on cancer cell lines and macrophages of novel progesterone derivatives having an ester or a carbamate function at C-3 and C-17. Eur J Med Chem 2014; 82: 498505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Zhou L, Zhou W, Zhang H, Hu Y, Yu L, Zhang Y, et al.. Progesterone suppresses triple-negative breast cancer growth and metastasis to the brain via membrane progesterone receptor α. Int J Mol Med 2017; 40: 75561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Godbole M, Tiwary K, Badwe R, Gupta S, Dutt A. Progesterone suppresses the invasion and migration of breast cancer cells irrespective of their progesterone receptor status-a short report. Cell Oncol (Dordr) 2017; 40: 4117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    MacNamara P, O'Shaughnessy C, Manduca P, Loughrey H. Progesterone receptors are expressed in human osteoblast-like cell lines and in primary human osteoblast cultures. Calcif Tissue Int 1995; 57: 43641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Fang D, Yang H, Lin J, Teng Y, Jiang Y, Chen J, et al.. 17beta-estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. Biochem Biophys Res Commun 2015; 457: 5006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Quinkler M, Kaur K, Hewison M, Stewart P, Cooper M. Progesterone is extensively metabolized in osteoblasts: implications for progesterone action on bone. Hormone Metab Res 2008; 40: 67984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Domínguez-Malagón HR, González-Conde E, Cano-Valdez AM, Luna-Ortiz K, Mosqueda-Taylor A. Expression of hormonal receptors in osteosarcomas of the jaw bones: Clinico-pathological analysis of 21 case. Medicina oral, patologia oral y cirugia bucal 2014; 19: e44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Syed V, Ho S-M. Progesterone-induced apoptosis in immortalized normal and malignant human ovarian surface epithelial cells involves enhanced expression of FasL. Oncogene 2003; 22: 6883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Han S, Lee K-M, Choi J-Y, Park SK, Lee J-Y, Lee JE, et al.. CASP8 polymorphisms, estrogen and progesterone receptor status, and breast cancer risk. Breast Cancer Res Treat 2008; 110: 38793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Pu X, Storr SJ, Zhang Y, Rakha EA, Green AR, Ellis IO, et al.. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis 2017; 22: 35768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Himuro T, Horimoto Y, Arakawa A, Matsuoka J, Tokuda E, Tanabe M, et al.. Activated caspase 3 expression in remnant disease after neoadjuvant chemotherapy may predict outcomes of breast cancer patients. Ann Surg Oncol 2016; 23: 223541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Xiong J, Zhao J, Peng L, Wang H, Liang W. BRCA1 inhibits progesterone-induced proliferation and migration of breast cancer cells. Nan Fang Yi Ke Da Xue Xue Bao 2012; 32: 110510.

    • Search Google Scholar
    • Export Citation

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Physiology International
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Social Science Citation Index

 

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 632 EUR / 788 USD 
Print + online subscription: 736 EUR / 920 USD
Subscription fee 2022 Online subsscription: 644 EUR / 806 USD
Print + online subscription: 752 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Publication
Programme
2021 Volume 108
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 15 0 0
Jul 2021 184 4 6
Aug 2021 29 1 2
Sep 2021 65 4 5
Oct 2021 43 0 0
Nov 2021 21 0 0
Dec 2021 0 0 0