Authors:
J.A. Loeppky Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, Canada
Research Section, VA Medical Center, Albuquerque, NM 87108, Canada

Search for other papers by J.A. Loeppky in
Current site
Google Scholar
PubMed
Close
,
R.M. Salgado United States Army Research, Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, MA 01760, USA

Search for other papers by R.M. Salgado in
Current site
Google Scholar
PubMed
Close
,
A.C. Sheard School of Kinesiology and Nutritional Science, California State University, Los Angeles, CA 90032, USA

Search for other papers by A.C. Sheard in
Current site
Google Scholar
PubMed
Close
,
D.O. Kuethe New Mexico Resonance, Albuquerque, NM 87106, Canada

Search for other papers by D.O. Kuethe in
Current site
Google Scholar
PubMed
Close
, and
C.M. Mermier Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, Canada

Search for other papers by C.M. Mermier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Reports of VO2 response differences between normoxia and hypoxia during incremental exercise do not agree. In this study VO2 and VE were obtained from 15-s averages at identical work rates during continuous incremental cycle exercise in 8 subjects under ambient pressure (633 mmHg ≈1,600 m) and during duplicate tests in acute hypobaric hypoxia (455 mmHg ≈4,350 m), ranging from 49 to 100% of VO2 peak in hypoxia and 42–87% of VO2 peak in normoxia. The average VO2 was 96 mL/min (619 mL) lower at 455 mmHg (n.s. P = 0.15) during ramp exercises. Individual response points were better described by polynomial than linear equations (mL/min/W). The VE was greater in hypoxia, with marked individual variation in the differences which correlated significantly and directly with the VO2 difference between 455 mmHg and 633 mmHg (P = 0.002), likely related to work of breathing (Wb). The greater VE at 455 mmHg resulted from a greater breathing frequency. When a subject's hypoxic ventilatory response is high, the extra work of breathing reduces mechanical efficiency (E). Mean ∆E calculated from individual linear slopes was 27.7 and 30.3% at 633 and 455 mmHg, respectively (n.s.). Gross efficiency (GE) calculated from mean VO2 and work rate and correcting for Wb from a VE–VO2 relationship reported previously, gave corresponding values of 20.6 and 21.8 (P = 0.05). Individual variation in VE among individuals overshadows average trends, as also apparent from other reports comparing hypoxia and normoxia during progressive exercise and must be considered in such studies.

  • 1.

    Aaron EA, Seow KC, Johnson BD, Dempsey JA. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 1992; 72: 181825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Dominelli PB, Render JN, Molgat-Seon Y, Foster GE, Sheel AW. Precise mimicking of exercise hyperpnea to investigate the oxygen cost of breathing. Respir Physiol Neurobiol 2014; 201: 1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Engelen M, Porszasz J, Riley M, Wasserman K, Maehara K, Barstow TJ. Effects of hypoxic hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J Appl Physiol 1996; 81: 25008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Lador F, Tam E, Adami A, Kenfack MA, Bringard A, Cautero M, et al.. Cardiac output, O2 delivery and VO2 kinetics during step exercise in acute normobaric hypoxia. Respir Physiol Neurobiol 2013; 186: 20613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Prieur F, Benoit H, Busso T, Castells J, Denis C. Effect of endurance training on the VO2-work rate relationship in normoxia and hypoxia. Med Sci Sports Exerc 2005; 37: 6649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hughson RL, Kowalchuk JM. Kinetics of oxygen uptake for submaximal exercise in hyperoxia, normoxia, and hypoxia. Can J Appl Physiol 1995; 20: 198210.

  • 7.

    Murphy PC, Cuervo LA, Hughson RL. A study of cardiorespiratory dynamics with step and ramp exercise tests in normoxia and hypoxia. Cardiovasc Res 1989; 23: 82532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Noordhof DA, Schoots T, Hoekert DH, de Koning JJ. Is gross efficiency lower at acute simulated altitude than at sea level? Int J Sports Physiol Perform 2013; 8: 31922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Di Prampero PE, Boutellier U, Pietsch P. Oxygen deficit and stores at onset of muscular exercise in humans. J Appl Physiol Respir Environ Exerc Physiol 1983; 55: 14653.

    • Search Google Scholar
    • Export Citation
  • 10.

    Latshang TD, Turk AJ, Hess T, Schoch OD, Bosch MM, Barthelmes D, et al.. Acclimatization improves submaximal exercise economy at 5533 m. Scand J Med Sci Sports 2013; 23: 45867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Lundby C, Calbet JA, Sander M, van Hall G, Mazzeo RS, Stray-Gundersen J, et al.. Exercise economy does not change after acclimatization to moderate to very high altitude. Scand J Med Sci Sports 2007; 17: 28191.

    • Search Google Scholar
    • Export Citation
  • 12.

    Benoit H, Busso T, Prieur F, Castells J, Freyssenet D, Lacour JR, et al.. Oxygen uptake during submaximal incremental and constant work load exercises in hypoxia. Int J Sports Med 1997; 18: 1015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Ibañez J, Rama R, Riera M, Prats MT, Palacios L. Severe hypoxia decreases oxygen uptake relative to intensity during submaximal graded exercise. Eur J Appl Physiol Occup Physiol 1993; 67: 713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Heubert RA, Quaresima V, Laffite LP, Koralsztein JP, Billat VL. Acute moderate hypoxia affects the oxygen desaturation and the performance but not the oxygen uptake response. Int J Sports Med 2005; 26: 54251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bender PR, Groves BM, McCullough RE, McCullough RG, Huang SY, Hamilton AJ, et al.. Oxygen transport to exercising leg in chronic hypoxia. J Appl Physiol 1988; 65: 25927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Pugh LGCE, Gill MB, Lahiri S, Milledge JS, Ward MP, West JB. Muscular exercise at great altitudes. J Appl Physiol 1964; 19: 43140.

  • 17.

    Reeves JT, Grover RF, Cohn JE. Regulation of ventilation during exercise at 10,200 ft in athletes born at low altitude. J Appl Physiol 1967; 22: 54654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sutton JR, Reeves JT, Wagner PD, Groves BM, Cymerman A, Malconian MK, et al.. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol 1988; 64: 130921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol 1986; 61: 26070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Clark SA, Bourdon PC, Schmidt W, Singh B, Cable G, Onus KJ, et al.. The effect of acute simulated moderate altitude on power, performance and pacing strategies in well-trained cyclists. Eur J Appl Physiol 2007; 102: 4555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Loeppky JA, Sheard AC, Salgado RM, Mermier CM. VESTPD as a measure of ventilatory acclimatization to hypobaric hypoxia. Physiol Int 2016; 103: 37791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Salgado RM, Sheard AC, Vaughan RA, Parker DL, Schneider SM, Kenefick RW, et al.. Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3. Physiol Rep 2017; 5: e13054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    White AC, Salgado RM, Astorino TA, Loeppky JA, Schneider SM, McCormick JJ, et al.. The effect of 10 days of heat acclimation on exercise performance in acute hypobaric hypoxia (4350 m). Temperature 2016; 3: 17685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    West JB. Prediction of barometric pressures at high altitude with the use of model atmospheres. J Appl Physiol 1996; 81: 18504.

  • 25.

    Coyle EF, Sidossis LS, Horowitz JF, Beltz JD. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 1992; 24: 7828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Gaesser GA, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol 1975; 38: 11329.

  • 27.

    Bijker KE, De Groot G, Hollander AP. Delta efficiencies of running and cycling. Med Sci Sports Exerc 2001; 33: 154651.

  • 28.

    Lusk G. The elements of the science of nutrition. 3rd ed. Philadelphia, USA: W B Saunders; 1917 [Table, p. 61].

  • 29.

    Stainsby WN, Gladden LB, Barclay JK, Wilson BA. Exercise efficiency: validity of base-line subtractions J Appl Physiol Respir Environ Exerc Physiol 1980; 48: 51822.

    • Search Google Scholar
    • Export Citation
  • 30.

    Crow EL, Davis FA, Maxfield MW. Statistics manual. New York, NY: Dover; 1960. pp.1601.

  • 31.

    Eisele JH, Wuyam B, Savourey G, Eterradossi J, Bittel JH, Benchetrit G. Individuality of breathing patterns during hypoxia and exercise. J Appl Physiol 1992; 72: 244653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Cruz JC. Mechanics of breathing in high altitude and sea level subjects. Respir Physiol 1973; 17: 14661.

  • 33.

    Bartlett RG Jr., Brubach HF, Spect H. Oxygen cost of breathing. J Appl Physiol 1958; 12: 41324.

  • 34.

    Kennard CD, Martin BJ. Respiratory frequency and the oxygen cost of exercise. Eur J Appl Physiol Occup Physiol 1984; 52: 3203.

  • 35.

    Walsh ML, Banister EW. The influence of inspired oxygen on the oxygen uptake response to ramp exercise. Eur J Appl Physiol 1995; 72: 715.

  • 36.

    Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, et al.. Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol 1987; 63: 5319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Stenberg J, Ekblom B, Messin R. Hemodynamic response to work at simulated altitude, 4,000 m. J Appl Physiol 1966; 21: 158994.

  • 38.

    Hughes RL, Clode M, Edwards RH, Goodwin TJ, Jones NL. Effect of inspired O2 on cardiopulmonary and metabolic responses to exercise in man. J Appl Physiol 1968; 24: 33647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Asmussen E, Dobeln WV, Nielsen M. Blood lactate and oxygen debt after exhaustive work at different oxygen tensions. Acta Physiol Scand 1948; 15: 5762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Consolazio CF, Nelson RA, Matoush LR, Hansen JE. Energy metabolism at high altitude (3,475 m). J Appl Physiol 1966; 21: 173240.

  • 41.

    Fellmann N, Bedu M, Spielvogel H, Falgairette G, Van Praagh E, Coudert J. Oxygen debt in submaximal and supramaximal exercise in children at high and low altitude. J Appl Physiol 1986; 60: 20915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Raynaud J, Martineaud JP, Bordachar J, Tillous MC, Durand J. Oxygen deficit and debt in submaximal exercise at sea level and high altitude. J Appl Physiol 1974; 37: 438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Shephard RJ, Bouhlel E, Vandewalle H, Monod H. Anaerobic threshold, muscle volume and hypoxia. Eur J Appl Physiol Occup Physiol 1989; 58: 82632.

  • 44.

    Dejours P, Kellogg RH, Pace N. Regulation of respiration and heart rate response in exercise response to altitude acclimatization. J Appl Physiol 1963; 18: 108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Hansen JE, Vogel JA, Stelter GP, Consolazio CF. Oxygen uptake in man during exhaustive work at sea level and high altitude. J Appl Physiol 1967; 23: 51122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 45 0 1
Jan 2024 44 1 0
Feb 2024 38 1 2
Mar 2024 31 2 0
Apr 2024 44 0 0
May 2024 35 0 0
Jun 2024 0 0 0