View More View Less
  • 1 Department of Physiology, Hiralal Mazumdar Memorial College for Women, Kolkata 700035, West Bengal, , India
  • | 2 Department of Physiology, Himachal Dental College, , Sunder Nagar, Himachal Pradesh 175002, , India
  • | 3 Department of Physiology, Vidyasagar College, Kolkata 700006, West Bengal, , India
  • | 4 Department of Physiology, University of Calcutta, Kolkata 700009, West Bengal, , India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Abstract

An imbalance between calorie intake and energy expenditure produces obesity. It has been a major problem in societies of the developing and developed world. In obesity an excessive amount of fat accumulates in adipose tissue cells as well as in other vital organs like liver, muscles, and pancreas. The adipocytes contain ob genes and express leptin, a 16 kDa protein. In the present communication, we reviewed the molecular basis of the etiopathophysiology of leptin in obesity. Special emphasis has been given to the use of leptin as a drug target for obesity treatment, the role of diet in the modulation of leptin secretion, and reduction of obesity at diminished level of blood leptin induced by physical exercise.

  • 1.

    Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism 2019; 92: 610.

  • 2.

    Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 2002; 26: 140733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ahima RS. Revisiting leptin's role in obesity and weight loss. J Clin Invest 2008; 118: 238083.

  • 4.

    Yang R, Barouch LA. Leptin signaling and obesity: cardiovascular consequences. Circul Res 2007; 101: 54559.

  • 5.

    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 42532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004; 304: 10810.

  • 7.

    Koopmans SJ, Frolich M, Gribnau EH, Westendorp RGJ, DeFronzo RA. Effect of hyperinsulinemia on plasma leptin concentrations and food intake in rats. Am J Physiol Endocrinol Metab 1998; 274: E998E1001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Gainsford T, Willson TA, Metcalf D, Handman E, McFarlane C, Ashley Ng A, et al. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA 1996; 93: 1456468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Palou A, Serra F, Bonet ML, Picó C. Obesity: molecular bases of a multifactorial problem. Eur J Nutr 2000; 39: 12744.

  • 10.

    Münzberg H. Leptin-signaling pathways and leptin resistance. Forum Nutr 2010; 63: 12332.

  • 11.

    Wasim M. Role of leptin in obesity. J Obes Weight Loss Ther 2015; 5;258. https://doi.org/10.4172/2165-7904.1000258.

  • 12.

    Hoggard N, Hunter L, Duncan JS, Williams LM, Trayhurn P, Mercer JG. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc Natl Acad Sci USA 1997; 94: 1107378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Spicer LJ, Francisco CC. The adipose obese gene product, leptin: evidence of a direct inhibitory role in ovarian function. Endocrinology 1997; 138: 337479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 1998; 393: 68488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, et al. The stomach is a source of leptin. Nature 1998; 394: 79093.

  • 16.

    Ahima RS, Flier JS. Leptin. Annual Rev Physiol 2000; 62: 41337.

  • 17.

    Zhang F, Chen Y, Heiman M, Di Marchi R. Leptin: structure, function and biology. Vitam Horm 2005; 7: 34572.

  • 18.

    Carter ME, Soden ME, Zweifel LS, Palmiter RD. Genetic identification of a neural circuit that suppresses appetite. Nature 2013; 503: 11114.

  • 19.

    Brabant G, Nave H, Mayr B, Behrend M, van Harmelen V, Arner P. Secretion of free and protein-bound leptin from subcutaneous adipose tissue of lean and obese women. J Clin Endocrinol Metab 2002; 87: 396670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 2004; 50: 151125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Huang L, Wang JW, Li C. Modulation of circulating leptin levels by its soluble receptor. J Biol Chem 2001; 276: 634349.

  • 22.

    Hedef EYD. Leptin: a new aspect of a multifunctional protein. Al-Mustansiriyah J Pharm Sci 2004; 1: 7285.

  • 23.

    Fatima W, Shahid A, Imran M, Manzoor J, Hasnain S, Rana S, et al. Leptin deficiency and leptin gene mutations in obese children from Pakistan. Int J Padiatr Obes 2011; 6: 41927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Frühbeck G. Intracellular signalling pathways activated by leptin. Biochem J 2006; 393: 720.

  • 25.

    Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 2014; 220: 2546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kitamura T, Feng Y, Kitamura YI, Chua SC, Jr., Xu AW, Barsh GS, et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 2006; 12: 53440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Speakman JR, Stubbs RJ, Mercer JG. Does body mass play a role in the regulation of food intake? Proc Nutr Soc 2002; 61: 47387.

  • 28.

    Sandhofer A, Laimer M, Ebenbichler CF, Kaser S, Paulweber B, Patsch JR. Soluble leptin receptor and soluble receptor-bound fraction of leptin in the metabolic syndrome. Obes Res 2003; 11: 76068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Cortese L, Terrazzano G, Pelagalli A. Leptin and immunological profile in obesity and its associated diseases in dogs. Int J Mol Sci 2019; 20: 2392. https://doi.org/10.3390/ijms20102392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kurrimbux D, Gaffen Z, Far-el CL, Martin D, Thomas SA. The involvement of the blood–brain and the blood-cerebrospinal fluid barriers in the distribution of leptin into and out of the rat brain. Neuroscience 2004; 123: 52736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Ramos-Lobo AM, Jose D Jr. The role of leptin in health and disease. Temp 2017; 4: 25891.

  • 32.

    Garfield AS, Patterson C, Skora S, Gribble FM, Reimann F, Evans ML, et al. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract. Endocrinol 2012; 153: 460007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Scott MM, Williams KW, Rossi J, Lee CE, Elmquist JK. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J Clin Invest 2011; 121: 241321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Muruzábal FJ, Frühbeck G, Gómez-Ambrosi J, Archanco M, Burrell MA. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. General Comparative Endocrinol 2002; 128: 14952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Klok MD, Jacobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Review 2007; 8: 2134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Fruhwürth S, Vogel H, Schürmann A, Williams KJ. Novel insights into how overnutrition disrupts the hypothalamic actions of leptin. Front Endocrinol 2018; 9: 89. https://doi.org/10.3389/fendo.2018.00089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Larabee CM, Neely OC, Domingos AI. Obesity: a neuroimmunometabolic perspective. Nat Rev Endocrinol 2020; 16: 3043.

  • 38.

    Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metabol 2011; 96: 19299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Stadion M, Schwerbel K, Graia A, Baumeier C, Rödiger M, Jonas W, et al. Increased Ifi202b/IFI16 expression stimulates adipogenesis in mice and humans. Diabetologia 2018; 61: 116779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 2015; 160: 88104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinol 2008; 149: 177385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Enriori PJ, Sinnayah P, Simonds SE, Garcia Rudaz C, Cowley MA. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci 2011; 31: 1218997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Zhang Y, Kerman IA, Laque A, Nguyen P, Faouzi M, Louis GW, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci 2011; 31: 187384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Dodd GT, Worth AA, Nunn N, Korpal AK, Bechtold DA, Allison MB, et al. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metab 2014; 20: 63949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Rezai-Zadeh K, Yu S, Jiang Y, Laque A, Schwartzenburg C, Morrison CD, et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Molecul Metab 2014; 3: 68193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Pan W, Myers M. Leptin and the maintenance of elevated body weight. Nat Rev Neurosci 2018; 19: 95105.

  • 47.

    Ottaway N, Mahbod P, Rivero B, Norman LA, Gertler A, D'Alessio DA, et al. Diet-induced obese mice retain endogenous leptin action. Cell Metab 2015; 21: 87782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Münzberg H, Flier JS, Bjørbæk C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinol 2004; 145: 488089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 2015; 64: 3546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metabol 2014; 19: 293301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    St-Pierre J, Tremblay ML. Modulation of leptin resistance by protein tyrosine phosphatases. Cell Metabol 2012; 15: 29297.

  • 52.

    Tsou RC, Zimmer DJ, De Jonghe BC, Bence KK. Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinol 2012; 153: 422737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes 2019; 12: 19198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Roujeau C, Jockers R, Dam J. New pharmacological perspectives for the leptin receptor in the treatment of obesity. Front Endocrinol 2014; 5: 167. https://doi.org/10.3389/fendo.2014.00167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Weigle DS, Cummings DE, Newby PD, Breen PA, Frayo RS, Matthys CC, et al. Roles of leptin and ghrelin in the loss of body weight caused by a low fat, high carbohydrate diet. J Clin Endocrinol Metab 2003; 88: 157786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 2004; 10: 73943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Hung HY, Qian K, Morris-Natschke SL, Hsu CS, Lee KH. Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Report 2012; 29: 580606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Sasaki T. Age-associated weight gain, leptin, and SIRT1: a possible role for hypothalamic SIRT1 in the prevention of weight gain and aging through modulation of leptin sensitivity. Front Endocrinol 2015; 6: 110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U. Treatment of obesity with celastrol. Cell 2015; 161: 9991011.

  • 60.

    Lee J, Liu J, Feng X, Salazar Hernandez MA, Mucka P, Ibi D, et al. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat Med 2016; 22: 102332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metabolism 2019; 30: 70619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Pugliese G, Barrea L, Laudisio D, Salzano C, Aprano S, Colao A, et al. Sleep apnea, obesity, and disturbed glucose homeostasis: epidemiologic evidence, biologic insights, and therapeutic strategies. Curr Obes Rep 2020; 9: 308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Herrmann TS, Bean ML, Black TM, Wang P, Coleman RA. High glycemic index carbohydrate diet alters the diurnal rhythm of leptin but not insulin concentrations. Exp Biol Med 2001; 226: 103744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Jensen MK, Koh-Banerjee P, Franz M, Sampson L, Gronback M, Rimun EB. Whole grains, bran, and germ in relation to homocysteine and markers of glycemic control, lipids, and inflammation. Am J Clin Nutr 2006; 83: 27583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Cha MC, Jones PJH. Dietary fat type and energy restriction interactively influence plasma leptin concentration in rats. J Lipid Res 1998; 39: 165560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, et al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutrition 2005; 82: 4148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Kraemer RR, Kraemer GR, Acevedo EO, Hebert EP, Temple E, Bates M, et al. Effects of aerobic exercise on serum leptin levels in obese women. Eur J Appl Physiol Occuptional Physiol 1999; 80: 15458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Pérusse L, Collier G, Gagnon J, Leon AS, Rao DC, Skinner JS, et al. Acute and chronic effects of exercise on leptin levels in humans. J Appl Physiol 1997; 83: 510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Bouassida A, Zalleg D, Bouassida S, Zaouali M, Feki Y, Zbidi A, Tabka Z. Leptin, its implication in physical exercise and training: a short review. J Sports Sci Med 2006; 5: 17281.

    • Search Google Scholar
    • Export Citation
  • 70.

    Kraemer RR, Chu H, Castracane VD. Leptin and exercise. Exp Biol Med 2002; 227: 70108.

  • 71.

    Houmard JA, Cox JH, Mac-Lean PS, Barakat HA. Effect of short-term exercise training on leptin and insulin action. Metabolism 2000; 49: 85861.

  • 72.

    Gomez-Merino D, Chennaoui M, Drogou C, Bonneau D, Guezennec CY. Decrease in serum leptin after prolonged physical activity in men. Med Sci Sports Exercise 2002; 34: 159499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Karacabey K. The effect of exercise on leptin, insulin, cortisol and lipid profiles in obese children. J International Med Res 2009; 37: 147278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Abedi B. Acute effect of concurrent exercise on serum leptin and resistance insulin response in sedentary men. Int Arch Health Sci 2020; 7: 1419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Catalan V, Gomez-Ambrosi J, Rodriguez A, Fruhbeck G.Adipose tissue immunity and cancer. Frontiers Physiol 2013; 4: 275. https://doi.org/10.3389/fphys.2013.00275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Perez-Hernandez AI, Catalan V, Gomez-Ambrosi J, Rodriguez A, Fruhbeck G. Mechanisms linking excess adiposity and carcinogenesis promotion. Frontiers in Endocrinol (Lausanne) 2014; 5: 65. https://doi.org/10.3389/fendo.2014.00065.

    • Search Google Scholar
    • Export Citation
  • 77.

    Garofalo C, Surmacz E. Leptin and cancer. J Cellular Physiol 2006; 207: 1222.

  • 78.

    Dutta D, Ghosh S, Pandit K, Mukhopadhyay P, Chowdhury S. Leptin and cancer: pathogenesis and modulation. Ind J Endocrinol Metab 2012; 16: S596S600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Atoum MF, Alzoughool F, Al-Hourani H. Linkage between obesity leptin and breast cancer. Breast Cancer: Basic Clinic Res 2020; 14: 18.

    • Search Google Scholar
    • Export Citation
  • 80.

    Sanchez-Jimenez F, Perez-Perez A, Cruz-Merino L de la, Sanchez-Margalet V. Obesity and breast cancer: role of leptin. Frontiers in Oncology 2019; 9: 596. https://doi.org/10.3389/fonc.2019.00596.

    • Crossref
    • Search Google Scholar
    • Export Citation

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Physiology International
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Social Science Citation Index

 

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 632 EUR / 788 USD 
Print + online subscription: 736 EUR / 920 USD
Subscription fee 2022 Online subsscription: 644 EUR / 806 USD
Print + online subscription: 752 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Publication
Programme
2021 Volume 108
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 145 0 0
Jul 2021 92 3 4
Aug 2021 148 5 8
Sep 2021 91 3 6
Oct 2021 108 4 5
Nov 2021 123 2 3
Dec 2021 0 0 0