View More View Less
  • 1 Universidad Pablo de Olavide, Sevilla, Spain
  • | 2 Universidad del Desarrollo, Santiago, Chile
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Abstract

We aimed to analyse the complexity and fractal nature of heartbeat during constant exercise, at three different intensities, and recovery.

Fourteen healthy men underwent 4 separate sessions. The first session was an incremental treadmill test to determine ventilatory thresholds (VT1 and VT2) and maximal aerobic speed (MAS). Each subject ran at VT1 and VT2 speeds and MAS (second, third and fourth day). The duration of VT1 and VT2 loads were selected in such a way that the product intensity-duration (training load) was the same. Sample Entropy (SampEn) and slope of Detrended Fluctuation Analysis (DFA α1) were measured during the whole session.

DFA α1 declines with exercise, being less in the VT1 trial than in the other two.

SampEn shows no significant change during exercise. The three tests induce the same decline in SampEn, but at the highest intensity (MAS) tends to decline during the exercise itself, whereas at lower intensities (VT1, VT2) the decline is delayed (10 min of recovery). Subsequently, SampEn at VT1 gradually recovers, whereas at VT2 and MAS it remains stable during recovery.

In conclusion, exercise produces a loss of heartbeat complexity, but not fractal nature, during recovery and it depends on intensity.

  • 1.

    Orri JC, Hughes EM, Mistry DG, Scala A. Assessment of heart rate variability after maximal exercise in trained postmenopausal women. Physiol Res 2018; 67: 7039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Rave G, Fortrat JO, Dawson B, Carre F, Dupont G, Saeidi A, et al. . Heart rate recovery and heart rate variability: use and relevance in European professional soccer. Int J Perform Anal Sport 2018; 18: 16883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Gronwald T, Hoos O. Correlation properties of heart rate variability during endurance exercise: a systematic review. Ann Noninvasive Electrocardiol 2020; 25: e12697. https://doi.org/10.1111/anec.12697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health 2017; 5: 117.

  • 5.

    Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 2002; 316: 87114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Peng CK, Buldyred SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev E 1994; 49: 16859.

  • 7.

    Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5: 827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCH, Mark RG, et al. . Components of a new research resource for complex physiologic signals. Circulation 2000; 101: e21520. [Circulation Electronic Pages; http://circ.ahajournals.org/content/101/23/e215.full].

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 1991; 88: 2297301.

  • 10.

    Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Circ Physiol 2000; 278: H203949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Porta A, Bari V, De Maria B, Cairo B, Vaini E, Malacarne M, et al. . On the relevance of computing a local version of sample entropy in cardiovascular control analysis. IEEE Trans Biomed Eng 2019; 66(3):62331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Millar PJ, Rakobowchuk M, Mccartney N, Macdonald MJ. Heart rate variability and nonlinear analysis of heart rate dynamics following single and multiple Wingate bouts. Appl Physiol Nutr Metab 2009; 34: 87583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Perkins SE, Jelinek HF, Al-Aubaidy HA, De Jong B. Immediate and long term effects of endurance and high intensity interval exercise on linear and nonlinear heart rate variability. J Sci Med Sport 2017; 20: 3126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Tulppo MP, Hughson RL, Mäkikallio TH, Airaksinen KEJ, Seppänen T, Huikuri HV. Effects of exercise and passive head-up tilt on fractal and complexity properties of heart rate dynamics. Am J Physiol Circ Physiol 2001; 280: H10817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppänen T, Mäkikallio TH, et al. . Physiological background of the loss of fractal heart rate dynamics. Circulation 2005; 112: 3149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Tulppo MP, Hautala AJ, Mäkikallio TH, Laukkanen RT, Nissilä S, Hughson RL, et al. . Effects of aerobic training on heart rate dynamics in sedentary subjects. J Appl Physiol 2003; 95: 36472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hautala AJ, Mäkikallio TH, Seppänen T, Huikuri HV, Tulppo MP. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin Physiol Funct Imaging 2003; 23: 21523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Casties F, Mottet D, Le Gallais D. Non-Linear analyses of heart rate variability during heavy exercise and recovery in cyclists. Int J Sports Med 2006; 27: 7805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Heffernan KS, Sosnoff JJ, Jae SY, Gates GJ, Fernhall B. Acute resistance exercise reduces heart rate complexity and increases QTc interval. Int J Sports Med 2008; 29: 28993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Javorka M, Žila I, Balhárek T, Javorka K. Heart rate recovery after exercise: Relations to heart rate variability and coplexity. Braz J Med Biol Res 2002; 35: 9911000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Heffernan KS, Fahs CA, Shinsako KK, Jae SY, Fernhall B. Heart rate recovery and heart rate complexity following resistance exercise training and detraining in young men. Am J Physiol Circ Physiol 2007; 293: H31806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Zhang D, She J, Yang J, Yu M. Linear and nonlinear dynamics of heart rate variability in the process of exposure to 3600 m in 10 min. Australas Phys Eng Sci Med 2015; 38: 26370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Platisa MM, Gal V. Correlation properties of heartbeat dynamics. Eur Biophys J 2008; 37: 124752.

  • 24.

    Platisa MM, Mazic S, Nestorovic Z, Gal V. Complexity of heartbeat interval series in young healthy trained and untrained men. Physiol Meas 2008; 29: 43950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Skinner JS, Mclellan TH. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 1980; 51: 23448.

  • 26.

    Reinhard U, Müller PH, Schmülling RM. Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration 1979; 38: 3642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med 2014; 44: 13947.

  • 28.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996; 17: 354381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Chen W, Zhuang J, Yu W, Wang Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng Phys 2009; 31: 618.

  • 30.

    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Mahwah, NJ: Erlbaum Associates; 1998.

  • 31.

    Naranjo J, De La Cruz B, Sarabia E, De Hoyo M, Dominguez-Cobo S. Heart rate variability: a follow-up in elite soccer players throughout the season. Int J Sports Med 2015; 36: 8816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 2002; 89: 14.

 

 

The author instruction is available in PDF.

Please, download the file from HERE

 

 

Senior editors

Editor(s)-in-Chief: Rosivall, László

Managing Editor: Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor; Radák, Zsolt

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

  • Benedek, György (Szeged)
  • Benyó, Zoltán (Budapest)
  • Boros, Mihály (Szeged)
  • Chernoch, László (Debrecen)
  • Détári, László (Budapest)
  • Giricz, Zoltán (Budapest)
  • Hamar, János (Budapest)
  • Hantos, Zoltán (Szeged)
  • Hunyady, László (Budapest)
  • Jancsó, Gábor (Szeged)
  • Karádi, Zoltán (Pécs)
  • Palkovits, Miklós (Budapest)
  • Papp, Gyula (Szeged)
  • Pavlik, Gábor (Budapest)
  • Spät, András (Budapest)
  • Szabó, Gyula (Szeged)
  • Szelényi, Zoltán (Pécs)
  • Szollár, Lajos (Budapest)
  • Szücs, Géza (Debrecen)
  • Telegdy, Gyula (Szeged)
  • Toldi, József (Szeged)
  • Tósaki, Árpád (Debrecen)

 

International Editorial Board

  • R. Bauer (Jena)
  • W. Benjelloun (Rabat)
  • A. W. Cowley Jr. (Milwaukee)
  • D. Djuric (Belgrade)
  • C. Fry (London)
  • S. Greenwald (London)
  • O. Hänninen (Kuopio)
  • H. G. Hinghofer-Szalkay (Graz)
  • T. Hortobágyi (Groningen)
  • Gy. Kunos (Richmond)
  • M. Mahmoudian (Tehran)
  • T. Mano (Seki, Gifu)
  • G. Navar (New Orleans)
  • H. Nishino (Nagoya)
  • O. Petersen (Liverpool)
  • U. Pohl (Münich)
  • R. S. Reneman (Maastricht)
  • A. Romanovsky (Phoenix)
  • G. M. Rubanyi (Richmond)
  • T. Sakata (Oita)
  • A. Siddiqui (Karachi)
  • Cs. Szabo (Beverly)
  • E. Vicaut (Paris)
  • N. Westerhof (Amsterdam)
  • L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Physiology International
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Social Science Citation Index

 

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
sumbission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 632 EUR / 788 USD
Print + online subscription: 736 EUR / 920 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Publication
Programme
2021 Volume 108
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 76 3 3
Mar 2021 47 2 2
Apr 2021 37 3 2
May 2021 76 4 2
Jun 2021 31 0 0
Jul 2021 22 3 4
Aug 2021 4 0 0