Authors:
R. Afroundeh Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran

Search for other papers by R. Afroundeh in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1592-7330
,
P. Hofmann Exercise Physiology, Training & Training Therapy Research Group; Institute of Human Movement Science, Sport & Health; University of Graz, Austria

Search for other papers by P. Hofmann in
Current site
Google Scholar
PubMed
Close
,
S. Esmaeilzadeh Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
Active Life Lab, South-Eastern Finland University of Applied Sciences, Mikkeli, Finland

Search for other papers by S. Esmaeilzadeh in
Current site
Google Scholar
PubMed
Close
,
M. Narimani Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran

Search for other papers by M. Narimani in
Current site
Google Scholar
PubMed
Close
, and
A.J. Pesola Active Life Lab, South-Eastern Finland University of Applied Sciences, Mikkeli, Finland

Search for other papers by A.J. Pesola in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We examined the agreement between heart rate deflection point (HRDP) variables with maximal lactate steady state (MLSS) in a sample of young males categorized to different body mass statuses using body mass index (BMI) cut-off points. One hundred and eighteen young males (19.9 ± 4.4 years) underwent a standard running incremental protocol with individualized speed increment between 0.3 and 1.0 km/h for HRDP determination. HRDP was determined using the modified Dmax method called S.Dmax. MLSS was determined using 2-5 series of constant-speed treadmill runs. Heart rate (HR) and blood lactate concentration (La) were measured in all tests. MLSS was defined as the maximal running speed yielding a La increase of less than 1 mmol/L during the last 20 min. Good agreement was observed between HRDP and MLSS for HR for all participants (±1.96; 95% CI = −11.5 to +9.2 b/min, ICC = 0.88; P < 0.001). Good agreement was observed between HRDP and MLSS for speed for all participants (±1.96; 95% CI = −0.40 to +0.42 km/h, ICC = 0.98; P < 0.001). The same findings were observed when participants were categorized in different body mass groups. In conclusion, HRDP can be used as a simple, non-invasive and time-efficient method to objectively determine submaximal aerobic performance in nonathletic young adult men with varying body mass status, according to the chosen standards for HRDP determination.

  • 1.

    American College of Sports Medicine. ACSM's Guidelines for exercise testing and prescription. USA: Lippincott Williams &Wilkins; 2006.

  • 2.

    Hofmann P, Tschakert G. Special needs to prescribe exercise intensity for scientific studies. Cardiol Res Pract 2010; 2011: 209302.

  • 3.

    Scharhag-Rosenberger F, Meyer T, aßler NG, Faude O, Kindermann W. Exercise at given percentages of VO2max:heterogeneous metabolic responses between individuals. J Sci Med Sport 2010; 13(1): 749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hofmann P, Tschakert G. Intensity- and duration-based options to regulate endurance training. Front Physiol 2017; 8: 337.

  • 5.

    Wonisch M, Hofmann P, Fruhwald FM, Kraxner W, Hödl R, Pokan R, et al.. Influence of beta-blocker use on percentage of target heart rate exercise prescription. Eur J Cardiovasc Prev Rehabil 2003; 10(4): 296301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Binder RK, Wonisch M, Corra U, Cohen-Solal A, Vanhees L, Saner H, et al.. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil 2008; 15(6): 72634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Beneke R. Methodological aspects of maximal lactate steady state–implications for performance testing. Eur J Appl Physiol 2003; 89(1): 959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Billat VL, Sirvent P, Py G, Koralsztein J-P, Mercier J. The concept of maximal lactate steady state. Sports Med 2003; 33(6): 40726.

  • 9.

    Conconi F, Ferrari M, Ziglio PG, Droghetti P, Codeca L. Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 1982; 52(4): 86973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Conconi F, Grazzi G, Casoni I, Guglielmini C, Borsetto C, Ballarin E, et al.. The Conconi test: methodology after 12 years of application. Int J Sports Med 1996; 17(7): 50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Heber S, Sallaberger-Lehner M, Hausharter M, Volf I, Ocenasek H, Gabriel H, et al.. Exercise-based cardiac rehabilitation is associated with a normalization of the heart rate performance curve deflection. Scand J Med Sci Sports 2019; 29(9): 136474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Nikolaizik WH, Knöpfli B, Leister E, de Boer P, Sievers B, Schöni MH. The anaerobic threshold in cystic fibrosis: comparison of V-slope method, lactate turn points, and Conconi test. Pediatr Pulmonol 1998; 25(3): 14753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Pokan R, Hofmann P, von Duvillard SP, Beaufort F, Smekal G, Gasser R, et al.. The heart rate performance curve and left ventricular function during exercise in patients after myocardial infarction. Med Sci Sports Exerc 1998; 30(10): 147580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bodner ME, Rhodes EC. A review of the concept of the heart rate deflection point: Sports. Med 2000; 30(1): 3146.

  • 15.

    Hofmann P, Jürimäe T, Jürimäe J, Purge P, Maestu J, Wonisch M, et al.. HRTP, prolonged ergometer exercise, and single sculling. Int J Sports Med 2007; 28(11): 9649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jones A, Doust J. Lack of reliability in Conconi's heart rate deflection point. Int J Sports Med 1995; 16(8): 5414.

  • 17.

    Jones AM, Doust JH. The Conconi test is not valid for estimation of the lactate turnpoint in runners. J Sports Sci 1997; 15(4): 38594.

  • 18.

    Hofmann P, Pokan R, von Duvillard SP, Seibert FJ, Zweiker R, Schmid P. Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med Sci Sports Exerc 1997; 29(6): 7628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hofmann P, Von Duvillard SP, Seibert FJ, Pokan R, Wonisch M, Lemura LM, et al.. %HRmax target heart rate is dependent on heart rate performance curve deflection. Med Sci Sports Exerc 2001; 33(10): 172631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hofmann P, Wonisch M, Pokan R, Schwaberger G, Smekal G, von Duvillard SP. Beta1-adrenoceptor mediated origin of the heart rate performance curve deflection. Med Sci Sports Exerc 2005; 37(10): 170409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Moser O, Tschakert G, Mueller A, Groeschl W, Eckstein ML, Koehler G, et al.. Different heart rate patterns during cardio-pulmonary exercise (CPX) testing in individuals with type 1 diabetes. Front Endocrinol (Lausanne) 2018; 9: 585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Siahkouhian M, Meamarbashi A. Advanced methodological approach in determination of the heart rate deflection point: S.Dmax versus L.Dmax methods. J Sports Med Phys Fitness 2013; 53(1): 2733.

    • Search Google Scholar
    • Export Citation
  • 23.

    Tokmakidis S, Leger L. External validity of the Conconi's heart rate anaerobic threshold as compared to the lactate threshold. Exer Physiol 1988; 3(1): 4358.

    • Search Google Scholar
    • Export Citation
  • 24.

    Vachon JA, Bassett DR, Clarke S. Validity of the heart rate deflection point as a predictor of lactate threshold during running. J Appl Physiol 1999; 87(1): 4529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hofmann P, Bunc V, Leitner H, Pokan R, Gaisl G. Heart rate threshold related to lactate turn point and steady-state exercise on a cycle ergometer. Eur J Appl Physiol Occup Physiol 1994; 69(2): 1329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Emerenziani GP, Ferrari D, Marocco C, Greco EA, Migliaccio S, Lenzi A, et al.. Relationship between individual ventilatory threshold and maximal fat oxidation (MFO) over different obesity classes in women. PLoS One 2019; 14(4): e0215307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Fidelix Y, Lofrano-Prado MC, Fortes LS, Hill JO, Caldwell AE, Botero JP, et al.. Aerobic training performed at ventilatory threshold improves psychological outcomes in adolescents with obesity. J Physical Activ Health 2019; 16(10): 8516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Park HY, Jung WS, Kim J, Hwang H, Lim K. Twelve weeks of aerobic exercise at the lactate threshold improves autonomic nervous system function, body composition, and aerobic performance in women with obesity. J Obes Metab Syndr 2020; 29(1): 6775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    De Assis PP, Piubelli CV, Mello RG, Pereira DJ, Guerra R, Silva MdAP. The relationship between the heart rate deflection point test and maximal lactate steady state. J Sports Med Phys Fitness 2016; 56(5): 497502.

    • Search Google Scholar
    • Export Citation
  • 30.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320: 12403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 2005; 335: 1947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    The international physical activity questionnaire; 2005. Available online: http://www.ipaq.ki.se/(accessed on 10 July 2018).

  • 33.

    Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, et al.. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003; 35: 138195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Marques-Neto SR, Maior AS, Neto GAM, Santos EL. Analysis of heart rate deflection points to predict the anaerobic threshold by a computerized method. J Strength Cond Res 2012; 26(7): 196774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 2010; 47(8): 9316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Portney LG, Watkins MP. Foundations of clinical research: applications to practice. Upper Saddle River, NJ: Prentice Hall; 2000.

  • 37.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15(2): 15563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Faude O, Kindermann W, Meyer T. Lactate threshold concepts. Sports Med 2009; 39(6): 46990.

  • 39.

    Debray P, Dey SK. A comparison of the point of deflection from linearity of heart rate and the ventilatory threshold in the determination of the anaerobic threshold in Indian boys. J Physiol Anthropol 2007; 26(1): 317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Gaisl G, Hofmann P. Heart rate determination of anaerobic threshold in children. Pediatr Exer Sci 1990; 2(1): 2936.

  • 41.

    Sentija D, Vucetic V, Markovic G. Validity of the modified Conconi running test. Int J Sports Med 2007; 28(12): 1006.

  • 42.

    Lepretre P-M, Foster C, Koralsztein J-P, Billat VL. Heart rate deflection point as a strategy to defend stroke volume during incremental exercise. J Appl Physiol 2005; 98(5): 16605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Pokan R, Hofmann P, von Duvillard SP, Smekal G, Hogler R, Tschan H, et al.. The heart rate turn point reliability and methodological aspects. Med Sci Sports Exer 1999; 31(6): 9037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Pokan R, Hofmann P, Preidler K, Leitner H, Dusleag J, Eber B, et al.. Correlation between inflection of heart rate/work performance curve and myocardial function in exhausting cycle ergometer exercise. Eur J Appl Physiol Occup Physiol 1993; 67(5): 3858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Rosic G, Pantovic S, Niciforovic J, Colovic V, Rankovic V, Obradovic Z, et al.. Mathematical analysis of the heart rate performance curve during incremental exercise testing. Act Physiol Hun 2011; 98(1): 5970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Jeukendrup A, Saris W, Brouns F, Kester AD. A new validated endurance performance test. Med Sci Sports Exer 1996; 28(2): 26670.

  • 47.

    Fell JW. The modified D-max is a valid lactate threshold measurement in veteran cyclists. J Sci Med Sport 2008; 11(5): 4603.

  • 48.

    Droghetti P, Borsetto C, Casoni I, Cellini M, Ferrari M, Paolini AR, et al.. Noninvasive determination of the anaerobic threshold in canoeing, cross-country skiing, cycling, roller and ice-skating, rowing, and walking. Eur J Appl Physiol 1985; 53: 299303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Beneke R, Hutler M, Von Duvillard SP, Sellens M, Leithauser RM. Effect of test interruptions on blood lactate during constant workload testing. Med Sci Sports Exer 2003; 35(9): 162630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Dittrich N, de Lucas RD, Beneke R, Guglielmo LGA. Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise. Int J Sports Physiol Perform 2013; 9(5): 7726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the file from HERE

 

Editor-in-Chief

László ROSIVALL (Semmelweis University, Budapest, Hungary)

Managing Editor

Anna BERHIDI (Semmelweis University, Budapest, Hungary)

Co-Editors

  • Gábor SZÉNÁSI (Semmelweis University, Budapest, Hungary)
  • Ákos KOLLER (Semmelweis University, Budapest, Hungary)
  • Zsolt RADÁK (University of Physical Education, Budapest, Hungary)
  • László LÉNÁRD (University of Pécs, Hungary)
  • Zoltán UNGVÁRI (Semmelweis University, Budapest, Hungary)

Assistant Editors

  • Gabriella DÖRNYEI (Semmelweis University, Budapest, Hungary)
  • Zsuzsanna MIKLÓS (Semmelweis University, Budapest, Hungary)
  • György NÁDASY (Semmelweis University, Budapest, Hungary)

Hungarian Editorial Board

  • György BENEDEK (University of Szeged, Hungary)
  • Zoltán BENYÓ (Semmelweis University, Budapest, Hungary)
  • Mihály BOROS (University of Szeged, Hungary)
  • László CSERNOCH (University of Debrecen, Hungary)
  • Magdolna DANK (Semmelweis University, Budapest, Hungary)
  • László DÉTÁRI (Eötvös Loránd University, Budapest, Hungary)
  • Zoltán GIRICZ (Semmelweis University, Budapest, Hungary and Pharmahungary Group, Szeged, Hungary)
  • Zoltán HANTOS (Semmelweis University, Budapest and University of Szeged, Hungary)
  • Zoltán HEROLD (Semmelweis University, Budapest, Hungary) 
  • László HUNYADI (Semmelweis University, Budapest, Hungary)
  • Gábor JANCSÓ (University of Pécs, Hungary)
  • Zoltán KARÁDI (University of Pecs, Hungary)
  • Miklós PALKOVITS (Semmelweis University, Budapest, Hungary)
  • Gyula PAPP (University of Szeged, Hungary)
  • Gábor PAVLIK (University of Physical Education, Budapest, Hungary)
  • András SPÄT (Semmelweis University, Budapest, Hungary)
  • Gyula SZABÓ (University of Szeged, Hungary)
  • Zoltán SZELÉNYI (University of Pécs, Hungary)
  • Lajos SZOLLÁR (Semmelweis University, Budapest, Hungary)
  • Gyula TELEGDY (MTA-SZTE, Neuroscience Research Group and University of Szeged, Hungary)
  • József TOLDI (MTA-SZTE Neuroscience Research Group and University of Szeged, Hungary)
  • Árpád TÓSAKI (University of Debrecen, Hungary)

International Editorial Board

  • Dragan DJURIC (University of Belgrade, Serbia)
  • Christopher H.  FRY (University of Bristol, UK)
  • Stephen E. GREENWALD (Blizard Institute, Barts and Queen Mary University of London, UK)
  • Osmo Otto Päiviö HÄNNINEN (Finnish Institute for Health and Welfare, Kuopio, Finland)
  • Helmut G. HINGHOFER-SZALKAY (Medical University of Graz, Austria)
  • Tibor HORTOBÁGYI (University of Groningen, Netherlands)
  • George KUNOS (National Institutes of Health, Bethesda, USA)
  • Massoud MAHMOUDIAN (Iran University of Medical Sciences, Tehran, Iran)
  • Tadaaki MANO (Gifu University of Medical Science, Japan)
  • Luis Gabriel NAVAR (Tulane University School of Medicine, New Orleans, USA)
  • Hitoo NISHINO (Nagoya City University, Japan)
  • Ole H. PETERSEN (Cardiff University, UK)
  • Ulrich POHL (German Centre for Cardiovascular Research and Ludwig-Maximilians-University, Planegg, Germany)
  • Andrej A. ROMANOVSKY (University of Arizona, USA)
  • Anwar Ali SIDDIQUI (Aga Khan University, Karachi, Pakistan)
  • Csaba SZABÓ (University of Fribourg, Switzerland)
  • Eric VICAUT (Université de Paris, UMRS 942 INSERM, France)
  • Nico WESTERHOF (Vrije Universiteit Amsterdam, The Netherlands)

 

Editorial Correspondence:
Physiology International
Semmelweis University
Faculty of Medicine, Institute of Translational Medicine
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: pi@semmelweis-univ.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • WoS - Science Citation Index Expanded

 

2022  
Web of Science  
Total Cites
WoS
335
Journal Impact Factor 1.4
Rank by Impact Factor

Physiology (Q4)

Impact Factor
without
Journal Self Cites
1.4
5 Year
Impact Factor
1.6
Journal Citation Indicator 0.42
Rank by Journal Citation Indicator

Physiology (Q4)

Scimago  
Scimago
H-index
33
Scimago
Journal Rank
0.362
Scimago Quartile Score

Physiology (medical) (Q3)
Medicine (miscellaneous) (Q3)

Scopus  
Scopus
Cite Score
2.8
Scopus
CIte Score Rank
Physiology 68/102 (33rd PCTL)
Scopus
SNIP
0.508

2021  
Web of Science  
Total Cites
WoS
330
Journal Impact Factor 1,697
Rank by Impact Factor

Physiology 73/81

Impact Factor
without
Journal Self Cites
1,697
5 Year
Impact Factor
1,806
Journal Citation Indicator 0,47
Rank by Journal Citation Indicator

Physiology 69/86

Scimago  
Scimago
H-index
31
Scimago
Journal Rank
0,32
Scimago Quartile Score Medicine (miscellaneous) (Q3)
Physiology (medical) (Q3)
Scopus  
Scopus
Cite Score
2,7
Scopus
CIte Score Rank
Physiology (medical) 69/101 (Q3)
Scopus
SNIP
0,591

 

2020  
Total Cites 245
WoS
Journal
Impact Factor
2,090
Rank by Physiology 62/81 (Q4)
Impact Factor  
Impact Factor 1,866
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,51
Citation Indicator  
Rank by Journal  Physiology 67/84 (Q4)
Citation Indicator   
Citable 42
Items
Total 42
Articles
Total 0
Reviews
Scimago 29
H-index
Scimago 0,417
Journal Rank
Scimago Physiology (medical) Q3
Quartile Score  
Scopus 270/1140=1,9
Scite Score  
Scopus Physiology (medical) 71/98 (Q3)
Scite Score Rank  
Scopus 0,528
SNIP  
Days from  172
submission  
to acceptance  
Days from  106
acceptance  
to publication  

2019  
Total Cites
WoS
137
Impact Factor 1,410
Impact Factor
without
Journal Self Cites
1,361
5 Year
Impact Factor
1,221
Immediacy
Index
0,294
Citable
Items
34
Total
Articles
33
Total
Reviews
1
Cited
Half-Life
2,1
Citing
Half-Life
9,3
Eigenfactor
Score
0,00028
Article Influence
Score
0,215
% Articles
in
Citable Items
97,06
Normalized
Eigenfactor
0,03445
Average
IF
Percentile
12,963
Scimago
H-index
27
Scimago
Journal Rank
0,267
Scopus
Scite Score
235/157=1,5
Scopus
Scite Score Rank
Physiology (medical) 73/99 (Q3)
Scopus
SNIP
0,38

 

Physiology International
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 664 EUR / 806 USD
Print + online subscription: 776 EUR / 942 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Physiology International
Language English
Size B5
Year of
Foundation
2006 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2498-602X (Print)
ISSN 2677-0164 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 39 5 1
Feb 2024 54 2 0
Mar 2024 43 3 1
Apr 2024 14 0 0
May 2024 32 0 0
Jun 2024 20 0 0
Jul 2024 0 0 0